I want an efficient algoritlm that can be used to solve the above problem .
Thank you.
u can use the sum of subsets algorithm…
algo sos(pos,curr_sum,remaining_sum)
vis[pos]=true;
//marking the current pos as visited
if(curr_sum+arr[pos]==req_sum)
//checks if the required sum is attained and prints that subset
for(i=0;i<n;i++)
if(vis[i])
print i
print '\n'
else if(pos < n-1 && curr_sum+arr[pos]+arr[pos+1] <= req_sum)
//checks if the current & next position element is added then the sum does not exceed the //required sum
//truncating left subtree
sum(pos+1,curr_sum+arr[pos],remaining_sum-arr[pos]);
if(pos < n-1 && curr_sum+arr[pos+1] <= req_sum && curr_sum+remaining_sum-arr[pos] >= req_sum)
//checks if the current element is dropped then will the sum be able to reach the required sum
//truncating right subtree
vis[pos]=false;
sum(pos+1,curr_sum,remaining_sum-arr[pos]);
vis[pos]=false;
//marking the current position as not visited as the fxn will return to the previous call
initial call will be made using pos=0 curr_sum=0 and remaining_sum=(sum of all elements in the array)…hope this helps…