Factorial Trailing zeros - Python

I already solved this problem using C++ and python 2.7, I am beginner at python and trying to learn the solutions coded by others in python. I could understand many of the solutions written in python, except this one

import sys, zlib, base64
code="""eJwsncmB40YQBB3iYzJxm4PTfxMU0asH68VuQCtEARwysv5++fU3/ebf+tt+++/4nb/79/ze3/fL3y/9Zfpl/mX5Zf1l/+X45fzl+uX+5fv171d26K/Tr8uv66/br/uvx6/Xr/evz6/vr99vym/iSNNvmn/T8pu237T/puM3nb/p+k3vb/p+899vzm/ub55/8/Kb19+8/eb9N5+/+frN929+fvP7W/5+S35Lf8v0W+bfsv6W7bfsv+X4LedveX4L7/l+699vzW+dfiv/dctvXX/r9luP33r+1uu33r/1+a3fb/v7bflt/W3Tb1t+G/8Q22/bf9vx2+7f9vy297d9v/3vt/e3T799/u3Lb19/+/7bj99+/vbrt9+//f3t3+/4+x35Hf0d8+9Yfsf6O7bfwT/s/Tue3/H+ju93/v3O/s7pd86/c/md6+/cfyf/9OfvvH7n/Tvf3/n9rr/fld/V3zX/ruV3rb9r+13777p+1/27nt/1/q7vd+d393dPv3v+3cvv3n73/ruP383/yet3P7/7/d3f7/n7Pfk90++Zf8/ye9bfs/2e8/dcv4f/48/veX/v3+/N7+3vnX7v/HvX37v93v33Hr/3/L337+XK4G3f7/v7ff190++bf9/y+9bfd/y+8/ddv+/+fc/v8/rhAvoLL66iPy6jPy6iP66iv40Xl9If19IfV9Ifl9Lfw+vlxbqwxivPS89rz4vPS89rz4vPq8/LL7yfazD1QmUNl2HK+7kQw5UYLsVwLaas4WoMl2O4HsMFmYk1XJKZvMI5DldluCDDFRkuyXBNZuL9k+/lGFya4doMF2e4OsPlGa7PcIGGKzRcouEaDRdpuErDZRqu03Chhis1XKpZ5Ij3c6mGazVcrFlYwxWbxfdzHC7acNWGyzZct1kFj+Nw6YZrN1y84eoNl2+4fsMFHK7gcAmHazhcxOESDtdwuIjDVZyNNVzK4VoOF3O4msPlHK7ncEGHKzpc0tklnDVc1eGyDtd1uLDDlR0u7XBth4s7XN3h2g4Xd7i6c9gWWHPwfq7zcKGHKz1c6jl5Pxd7uNrD5R6u95ys4YrPaS/hOFz0OVnDZR+u+3Dhhys/XPfhwg9Xfrj0w7Wfy+bD+yEgIBAYyM37oSBgEDgIIORmDSgEFgIMgYbcrIGH3K7hOCARaAg4BB4CEHl4P1QELAIXAYxARkAjsBHgCHQEPAIfAZBASEAkMBIgCZTkdQ3HAJSASeAkgBJIyccacAm8BGDy2UpZ89lPaagwU5gpzBRmCjOFmcJMYaYwU5gpzBRmCjOFl8JL4aXwUrp1YaYwU5gpzBRmCjO1b9u4R+dmHczU5m33tn3bv2GmdnBbuD3cJg4vnWz1HAdeShsvfbxwU7gp3BRuOvH+yfdzHLgp3HRmDdwUbgo3hZvOrIGbwk3hpnBTmCnMFGa6eE9hDQ2+cFO4KdwUbrrw/sX3cxy4Kdx0ZQ3cFG66ejNi3coauCncFG4KN4WXwkvhpfDSjfdv3rk4BswUZgoz3Xwvx4CZwkxhpjBTmCnMFGYKM4WZwkxhpjBTmCm8FF4KL4WXHqyBmcJMYaaH90jWwExhpjBTmCnMFGYKM4WZwkxhpjBTmCnMFGYKM4WXwkvhpfBSbhWFmcJMYaYwU5gpzBRmCjOFmcJMYaYwU5gpzBRmCjOFmcJMYaYwU3jp7fs5DryUe0i5iRRuCjeFm8JNH94PN4WbPt72WfewBm4KN4Wbwk1f1sBN4aZwU7gpzPT1OYHjwExhptxdCjeFm8JN4aYf74ebwk3hpnDTz4cLni7gZoKbCW6mP54w4GaCmwluJriZYGWClenPJxHeyz1mgpcJXiZ4meBlCu+FlwleJniZ4GUK6+BlgpepPsKwP886E7xM8DLBywQvEw88E6xMsDLByuQTD/eYaTzz8H6fenzsmVjjg49PPj76+OzDfWbyAQheJniZ4GXiPjPBywQvE7xM8DJxn5lgZYKVCVYm7jHTzBp4meBlgpdp8emKNfAywcsELxO8TNxnJniZ4GWClwleJu4zE7xM8DLBywQvE/eZCVYmWJlgZeIeM62sgZkJZiaYmWBmgpkJZiaYmWBmgpkJZiaYmWBm2lzDcWBmgpkJZiaYmWBmgpkJXiZ4meBlgpdpZw3MTDAzwcwEMxPMTDAzwcwEM9PhAyPrYGaCmQlmJpiZYGaCmQlmJpiZYGaCmen06ZJjwMrEU9XEPWaClwleJniZ4GW6eD+8TPAywcsEL9PFOniZ4GWClwleJh60JniZ4GWClwleJp62JliZYGWClYnHrYl7zAQvE7xM8DLBy/SwBl4meJngZYKXifvMBC8TvEzwMsHLxH1mgpcJXiZ4meBl4j4zwcoEKxOsTNxjptfnZd7/+n6OAy/Txxp4meBlgpcJXibuMxO8TPAywcsELxP3menzSZtHbXiZ4WXmPjPDygwrM6zM3GPmPx65ucfMcDPDzQw3c3w85/1wM8PNDDcz3MzcZ2a4meFmhpsZbmbuMzPczHAz12d61sHMDDMzzMwwM8PMzD1mhpsZbma4meFm5j4zw80MNzPczHAzc5+Z4WaGmxluZriZuc/McDP7ycGPDn528GODnxv84OAnB+4xs58d/PDgpweYmWFmhpkZZmaYmRc/bbAOZmaYmWFmhpkZZmaYmWFmhpkZZmaYmeFlXv14wnHgZeYeM8PMDDMzzMwwM8PMDDMzzMwwM8PMDDPz5mca1sDMDDMzzMwwM8PMvLmG48DMDC8zvMzwMsPLvPtBiPfDzAwzM8zMMDPDzAwzM8zMMDPDzAwzM8zMMDPDzAwzM8zMMDPDzAwzM8zM8DLDywwvM7zMfBCZTz9t8X64meFmhpuZ+8wMNzPczHAzw83MfWaGmxluZriZ4Wa+/JjGGriZ4WaGmxlmZpiZYWaGmRlmZu4xM9zMcDPDzXz72Y73376f48DNDDcz95kZbma4meFmhpuZ+8wMNzPczI8fCP1EyHvhZYaXGV5m7jEzzMwwM8PMDDMzzMyv7+UYMDPDzAwzM8zMMDPDzAwzM8zMMDPDzAwzM8zMMLPAywIvC7ws8LJwj1lgZoGZBWYWmFlgZoGZ5c/3+zH143Oqn1VZAzMLzCwws8DMAjMLzCwws8DMAjMLvCzwstQPt6zhPrPAzAIzC8wsMLPAzAIzC8wsMLPAzAIzC8wsk5+IWQMzC8wsMLPAzAIzC8wsMLPAywIvC7ws8LJwn1m4zyxws8DNAjcL3Cw8ly1ws8DNAjeLH7v93O0Hbz95+9Hbz95++PbTtx+//fztB3A/gfsRHGYWmFlgZuE+s6x+Vuc4cLPAzcJz2QI3C9wscLPAzcLnmQVuFrhZ4GaBm4VP5cvmh3zWwM0CNwu8LPCywMsCL8vO+2FmgZkFZhaYWXb/KsB7YWaBmQVmFphZYGaBmQVmFphZYGaBmQVmFphZDv+UwDp4WeBlgZcFXhY+ty8ws8DMAjMLzCwws8DMcvq3B44DMwvMLDCzwMwCMwvMLDCzwMwCMwvMLDCzwMwCLwu8LPCywMvCfWaBmQVmFphZYGaBmQVmFphZYGaBmQVmFphZYGaBmQVmFphZYGaBmQVmFphZYGZ5/KMI74eXBV4W7jML95kFbha4WeBmgZuF57IFbha4WeBmgZuFZ7Pl9S8qruE4cLPwbLbAzQI3C9wscLPAzAIzC8wsMLPIzOffYP54hVd5TbwWXiuvjdfO6+B18bp5PbxeXqzj+WyFmxVuVrhZ4WaFlRVWVlhZeS5buces8LLCywovK7ysfJZZ4WWFlxVeVnhZ+SyzwssKL2tdw/48m63wssLLCi8rvKw8m62wssLKCisrz2Ur95gVXlZ4WeFlhZd19k9KvB9eVnhZ4WXlPrPCywovK7ys8LJyn1nhZYWXFV7Wxb9DsQ5WVlhZYWXlHrPyWWaFl9W/WflHK/9qxWeZ1b9bjT9ccRz/dMV9ZvWPV/71yj9f+fcr7jMrvKzwssLLCi8r95kVVlZYWWFl5R6zbqyBmXXz/RwHZlaYWWFmhZkVZlaYWWFmhZkVZlaYWWFmhZkVZlaYWWFmhZkVZlZ4WQ//pMZx4GU9WAMzK8ysMLPCzAozK8ysMLPCzAozK8ysMLOe/i2ONTCzwswKMyvMrDCzwswKMyusrLCywsrKc9l6+cc73gsvK7ys8LLyWWaFlxVeVnhZ4WXls8wKLyu8rPCy3v7Fj3XwssLLCi8rvKw8m62wssLKCisrz2Ur95gVXtbHPxFyHHhZ+SyzwssKLyu8rPCycp9Z4WWFlxVeVnhZuc+s8LLCywovK7ys3GdWWFlhZYWVlXvMymeZFV5WeFnhZf38W+T72+Blg5cNXjZ42bjPbPCywcsGLxu8bNxnNnjZ4GX7c8332+JfMXk/rGywsnGP2fg8s3GP2eBmg5sNbja42bjPbHCz1T97chy42bjPbHCzwc0GNxvcbNxnNrjZ4GaDmw1utsm/k/J+mNlgZoOZjXvMBjcb3Gxws8HNxn1mg5sNbja42eBm4z6zwc0GNxvcbHCzcZ/Z4GaDmw1uNrjZ4GVb/GMs74eXjXvMBjMbzGwws8HMBjPb4ns5BsxsMLPBzAYz2+pfcVkDMxvMbDCzwcwGMxvMbDCz+Sdf/+brH33hZfMvv/7d1z/8+pdfmNlgZvPvv/4BGGY2mNlgZoOZDWY2mNlgZtv9ezFrYGaDmQ1mNpjZ4GWDlw1eNnjZDtbAzAYz2+EfmFkDMxvMbIfv5zgws8HMBjMbzGwws8HMBjMbzGwws8HMBjMbzGzwssHLBi8bvGx8ntm4x2xws8HNBjcb3GzcZza42eBmg5sNbjbuMxvcbHCzwc0GNxv3mQ1uttu/fnMcuNlgZoOZDWY2mNlgZuMes8HNBjcb3Gxws3Gf2eBme/yzOceBm437zAY3G9xscLPBzcZ9ZoObDW42uNngZnt9L8eAlw1eNu4xG8xsMLPBzAYzG8xsMLPBzAYzG8xsMLPDzA4zO8zsMLPDzA4zO8zsMLPDzA4zO7zsf77/++3wsnOP2WFmh5kdZnaY2WFmh5kdZnaY2WFmh5kdZvb6FQBrYGaHmR1mdpjZYWaHmR1mdnjZ4WWHlx1edu4z++T3BrwfZnaY2WFmh5kdZnaY2WFmh5kdZnaY2WFmh5kdZnaY2WFmh5kdZnaY2eFlh5cdXnZ42bnP7NxndrjZ4WZf/IaCNTyX7XCzw80ONzvc7Dyb7XCzw80ONzvc7Dyb7XCzr36twXHgZoeZHWZ2mNlhZoeZnfvMDjc73Oxws8PNznPZDjc73Oxws8PNzueZHW72zTUcx69O/O7EL0/89sSvT8b3J7zX70788gRedr9BgZkdZnaY2WFmh5kdZnaY2Q+/cOEYMLPDzA4z++EajgEzO8zsMLPDzA4zO8zsp9/Q8H542eFlP1kDMzvM7DCzw8wOMzvM7DCzw8wOMzvM7DCzw8wOMzvM7DCzw8wOMzvM7DCzw8wOLzu87PCy334XxBqY2WFmh5kdZnaY2WFmh5kdZnaY2WFmh5kdZnaY2WFmh5kdZnaY2WFmh5kdZnZ42eFlh5cdXnbuMzv3mf31/RwHbna42Xku2+Fmh5sdbna42Xk22+Fmh5sdbna42T+/qvrjFV7lNfFaeW28dl4Hr5PXzevh9fJiTfx+i/fDzQE3B9wccHPweeaAmwNuDrg54Obg+eyAmwNujvqlGOtg5YCVA1YOnssO7jEHvBzwcsDLAS8Hn2UOeDng5YCXA14OPssc8HLAywEvB7wcPJsd8HLAywEvx+y3bqyDlQNWDlg5eC47uMcc8HLAywEvB7wcfJY54OWAl2PxqzqOw33mgJcDXg54OeDl4D5zwMsBLwe8HPBycJ85Vr/b4/2wcnCPOfgsc8DLAS8HvBzwcvBZ5oCXA14OeDng5eA+c8DLAS8HvBzwcnCfOeDlgJcDXg54ObjPHLBywMoBK8fut4isgZkDZg6YOWDmgJnD7xz90tFvHWHm8KtHv3j0m0e/eoSZA2YOv4P0S0i/hYSZA2YOeDng5YCXA16OkzUwc8DMATMHzBwwc8DMATMHzBwwc8DMATMHzBwwc8DMATMHzBwwc8DMATMHzBywcsDKASsHz2UH95gDXg54OeDlgJeDzzIHvBzwcsDLAS8Hn2UOeDng5YCXA14Ons0OeDkev09lDbwcPJsdsHLAygErB89lB/eYA14OeDng5YCXg88yB7wc8HLAywEvB/eZA14OeDng5YCXg/vMAS8HvBzwcsDLwX3mhJUTVk5YObnHnHyWOeHlhJcTXk54Ofksc8LL+ef7v98JLyf3mRNeTng54eWEl5P7zAkvJ7yc8HLCy8l95qzfDfN+WDm5x5x8njm5x5xwc8LNCTcn3JzcZ876fo4DNyfcnJNfKrMGbk64OeHm5D5zws0JNyfcnHBzwswJMyfMnDBzzn4Tzfvh5oSbE25OuDm5z5xwc8LNCTcn3JzcZ064OeHmXPz6mnXcZ064OeHmhJsTbk54OeHlhJcTXk7uMefqd90cA2ZOmDlh5oSZE2ZOmDlh5oSZE2ZOmDlh5oSZE2ZOmDlh5oSZE2ZOmDnh5YSXE15OeDm5x5wwc8LMufulOmtg5oSZE2ZOmDlh5oSZE2ZOmDlh5oSZE2ZOmDlh5jz8Np7jwMwJL+fh+zmO39ufrPGbe7+697t7v7yHmXN8fc/7/QLfb/Bh5oSZE2ZOmDlh5oSZE2ZOmDlh5oSZE2ZOeDnh5YSXE15OPs+c3GNOuDnh5oSbE25O7jMn3Jxwc97+UIB13GdOuDnh5oSbE25O7jMn3Jxwc8LNCTcnzJwwc8LMCTMnzJzcY064OeHmhJsTbk7uMyfcnHBzws0JNyf3mRNuTrg54eaEm5P7zAk3J9yccHPCzQkvJ7yc8HLKy+dvGMKrvCZeM6+F18Zr53XwOnldvB5eLy/WxB8+sA5mLpi5YOaCmQtmLni54OWClwteLu4xF8xc9ZcSHAdmLpi5YOaCmQtmLpi5YOaCmQtmrrqG48DMBTMXzFwwc8HMBTMXvFzwcsHLBS8X95kLZi6YuWDmmv1JBmtg5oKZC2YumLlg5oKZC2YumLlg5oKZC2YumLlg5lr8LQfr4OWClwteLni5uM9c3GcuuLng5oKbC24unsuu1R9/cBy4ueDm4tnsgpsLbi64ueDm4tnsgpsLbi64ueDmgpkLZi6YuWDmgpmL+8y1+X6OAzcX3Fw8l11wc8HNBTfX7s9MWAM3F9xccHPBzbWzBm4uuLng5oKbC14ueLng5YKX6+D9MHPBzAUzF8xcMHPBzAUzF8xcMHPBzAUzF8xcMHPBzAUzl7978Ycv/vLFn77AzOUvX/zpy/jtC2su1vgLGH8C429gYOaCmQtmLpi5YOaCmQtmLpi5YOaCmev2hzOsg5kLZi6YuWDmgpkLXi54ueDlgpeL+8wFM9fjL204DsxcMHPBzAUzF8xcMHPBzAUzF8xcMHPBzAUz1+vPc1gDMxfMXDBzwcsFLxe8XPBycZ+5uM9ccHPBzQU3F9zcPJfdcHPDzQ03N9zcPJvdcHPDzQ03N9zcPJvdcHP/ucYfArEOZm6YuWHmhpkbZm7uMzfc3HBzw80NNzfPZTfc3PXXQxwHbm4+z9xwc8PNDTc33Nw8n91wc8PNDTc33NywcsPKDSs3z2U395gbXm54ueHlhpebzzI3vNzwcsPLPfv7JNbByw0vN7zc8HLzbHbDyw0v9+wa9ufZ7IaVe/EHTRyH57Kbe8wNLze83PByw8vNZ5kbXm54ueHlhpeb+8wNLze83PByw8vNfeaGlxtebni54eXmPnPDyg0rN6zcm7+cYg283PByw8sNLzefZW54ueHlhpcbXm7uMze83PByw8u9+5Mr1sHLDS83vNzwcnOfuWHlhpUbVm7uMffBGpi5D3+jxXFg5oaZG2buw/dzHJi5YeaGmRtmbpi5YeaGmfv0h12sgZkbZm6YueHlhpcbXm54uS/WwMwNMzfM3DBzX/4ajPdfvp/j+MMxmLn96Zi/HfPHY/56DGZufz/mD8j8BZk/IYOZG1ZuWLlh5ea57OYec8PLDS83vNzwcvNZ5n58L8eAlxtebj7L3PByw8sNLze83Dyb3fByw8sNLze83Dyb3bByw8oNKzfPZTf3mBtebni54eWGl5vPMje83PByw8stL5+/bguv8pp4zbwWXhuvndfB6+R18Xp58f74czjW8FnmgZcHXh54eeDl4bPMAy8PvDzw8sDLw33mgZcHXh54eeDl4T7zwMsDLw+8PPDycJ95YOWp7+c43GOeyd/d8X64eeDmgZsHbh7uMw/cPHDzwM0DNw/3mQduHrh54OaZ/cEea+DmgZsHbh64eWDmgZkHZh6YeWDm4R7zwM2z+As/1sDNw33mgZsHbh64eeDm4T7zwM0DNw/cPHDzcJ95Vn8WyBq4eeDmgZcHXh54eeDl4R7zwMwDMw/MPDDzbP6OkPfCzAMzD8w8MPPAzAMzD8w8MPPAzAMzD8w8MPPAzAMzD7w88PLAywMvD/eYB2YemHlg5oGZB2YemHlg5oGZB2YemHlg5oGZB2YemHlg5oGZB2YemHlg5jn9kSPvh5cHXh54eU7WwMwDMw/MPDDzwMwDMw/MPDDzwMxz+etI1sDMc7mG48DMAzMPzDww88DMAzMPvDzw8tz+nJI1fJ55/NWlP7v0d5dw8/jjS3966W8v/fEl3Dxw8/gTzPEbTNbAzQM3D/eZB24euHng5oGbB2YemHlg5oGZB2Ye7jEP3Dxw88DNAzcP95kHbh64eeDmgZuH+8wDNw/cPHDzfP7a849XeJXXxGvmtfM6eJ28Ll43L9/7/d7481DeDzMvzLww88LMCzMvzLww88LMCzMvzLww88LMW39TyhqYeWHmhZcXXl54eeHl5R7zwsxb389xYOaFmRdmXph5YeaFmRdmXph5YeaFmRdmXph5YeaFmRdmXph5Z3+9yvvh5YWXF15e7jMvzLww88LMCzMvzLww88LMCzMvzLww88LMCzMvzLww88LMCzMvzLww88LMCzMvvLzw8sLLCy8v95mX+8wLNy/cvHDzws3Lc9kLNy/cvHDzws3Ls9kLNy/cvHDzws3Ls9kLNy/cvHDzws0LMy/MvDDz7v4YlzXcZ164eeHmhZsXbl6ey164eeHmhZsXbl4+z7xw8x7+gpfjwM17sAZu3sM1HAduXnh54eWFlxde3pP3w8wLMy/MvDDzwswLMy/MvDDzwswLMy/MvDDzwswLMy/MvDDzwsx7uYZjwMwLLy+8vPDywst7swZm3tvfFXMcmHlh5oWZF2ZemHlh5oWZF2ZemHlh5oWZF2ZemHkff5DMGn+5DDOvP1z2l8v+dBleXn+/7K+X/fmyv1+GmdcfMfsTZph5YeaFmRdmXph5YeaFmRdmXph5YeaFmRdmXph5YeaDlw9ePnj54OXjPvNxn/ng5oObD24+uPl4Lvv+fP/3++Dmg5uPZ7MPbj64+eDmg5uPZ7MPbj64+eDmg5uv/ria98PMBzMfzHzcZz64+eDmg5sPbj6ey776fo4DNx/cfJO/ymYN3Hxw88HNx/PZBzcf3Hxw88HNByff7M+3eR/3lw9ePlj5YOWDlY/PMd/s+9gbVj5Y+fgc88HLt/ibb9bAysdz2QcvH6x8sPLBysdz2QcvH5x8cPLxTPZxf/lWfyjO+2Hlg5WPzzEfvHyw8q2+n+Nwj/ng5YOVD1Y+WPm4x3zw8sHKBysfrHzcYz54+eDkg5OP+8vH55gPXj5Y+WDlg5WPzzEfvHyw8u2+n+Nwj/ng5YOVD1Y+WPm4x3yHv2JnDax8sPJxj/ng5YOTD04+7i/fyRruMR+8fPDywcsHL9/pz995P7x88PLBy8dnmQ9ePnj54OWDl4/P/x+8fPDywct3+Zt51sHKBysfrHw3a7jHfPDywcsHLx+8fDyXffDy3f7InuPAy8dnmQ9ePnj54OWDl49nsw9ePnj54OWDl49ns+/xvRyDZ7KP+8sHLx+sfLDywcrH55gPXj5Y+WDlg5WPzzEfvHz+4B9WPn/178/+/d2/v/qHlQ9WPn/+7+//x0//ff/4/b8CwDAAxs//4YWiBDAsgKEBDAcAaCiaAEMFGC6AIsBfhkHgBvoAfwoBf9oAf8oof3EDxYA/zYA/lYC/uFYx4E8z4E814E8v4K+u1Q74Uw/40w/4Uw74q2tVBP50BP6UBP40BP7qBnoCf4oCf9OwGNxgcoPJDSbPQG3gT1/gT2Hgb/IM1Ab+9Ab+lAb+tAb+Zs9Ad+BPeeBPc+BPdeBv9gwUCP40CP7UB/70B/5mN9Ai+FMj+FuGQ+EGixssnoE+wZ8iwZ8mwd/iGegT/CkU/GkT/KkT/K2egVLBn1bBn0rBn07B3+oZaBb8qRb86RX8KRb8rWMDz0C/4E+54E+74G9zg80z2IbM4bLNg+sY/CkZ/GkZ/KkY/O0eXNHgT9PgT9XgT8/gbx8SiAdXN/jTN/hTNvjb3WAfG3hwpYM/jYO/ww0ON1A++NM++FM7+Dtcq3zwp33wp37wp3vwd7pWA+FPBeFPB+FPAeHvdK0awp8ewp8iwp8Wwt/pBroIf8oIf9oIf6oIf5cbXG6glfCnlvCnj/B3DYnFM1BL+NNL+FNK+Ltcq5rwp5vwp5zwp5nwd7tWP+FPQeFPQ+FPPeHvHi6MG2gp/Kkp/Oko/D1u8LjB4xnoLPwpK/xpK/w9noHOwp/Swp/Gwt8z1noGigt/mgt/agt/egt/r2egvfCnvvCnu/CnvPD3uoEKw987fBw30GD4+9zg8wyUGf60GP7UGP4+z0CZ4U+b4U+V4U+X4e8bMo82j11gOEBDAopdYKhAwwUaItAwgWIXGD7QEIKGDfS/DuQGQwoaVpDsR/b/SUHDChpa0HCCbAD/zCAbwHCDhhgUG8DQg4YfNAShYQfFBjAcoSEJDUtoKEKxAQxRaJhCQxWK7Ef2I/tDGRrO0BCGhjEUG8DwhoY4NKyhoQ1lHj6TZ2ADGOrQcIdiAxgG0VCIhj80BKLYAIZGNDyiIRBF9iP7wyUaMtEwiYZKFBvAEIqGUTR0ouETxQYwrKKhFQ2naEhFsQEMtWi4RUMsGmZR1rGBZ2ADGGZRZD+yPySjYRkNxWg4RrELDNNoqEbDMxqiUewCQzcavtGQjYZtFLvAcI6GdDSMo6EcxS4wxKNhHg3lKDaA2ACGfTT0o+EeDfkodoGhIA0HaQhIw0CKXWB4SENEGhbS0JBiFxgy0rCRhoo0XKTYBYaRNJSkyH5kfxhJQ0kaTtIQkmIDGFrS8JKGmDSspNgAhps05KRhJw01KTaAISgNQ2koSsNPyj3ENjewAQxPKbIf2Y/sD19pCEvDVhq6UmwAQ1oa1tJQloazFBvAMJeGujS8pSEuxQYw9KXhLw15adhLsQEMh2lITMNeiuxH9ofINEymoTENjyk2gGEzDZ1puExDZso37Lyh5+nn2QA0migqejYAxaZoNUWtiaKnZwPQbopaUzokVNnXcIqKU/SbouBE0fCzC+g5RckpWk4UNT+7QIcg+M8OdAO7QIckOCzBoQgOR9Au0GEKDlXQBlAbQG0Aqk/RfYriUzSfKJ6BXUABKtpPUX+ieAZ2AS2oqEBFB4oyBEXPwC6gBxVFKIob2AX0oSgeV+xVoaILFWUoiseVfX2oKERFI4ricWVfKSpaUVGLosu5gexrRkU1KrpRFDeQffWo6EdFQYriWrHXk4qiVDSloiZFce025Eo3UDHUlaK4VvZVpqIzFYUpihvIvt5UFKeiNUUZeqYbyL72FMW1+1jrGXjzV6GK/hTFtbKvRhU9qihRUVwr+7pUUaaKJhVd3Q1kX6EqGlVRp6K4gexrVUWtiuJasdesimpVdKuiWEVxrQ1AvyoKVtGuorj2Go6pZ2ADULGiuIENQNMqqlbRs6K4gQ1A3Sr6VpQhqLpW9nWuonQVjSuKa20AilfRvIraFcW1NgDtq6hfRfeK4gY2ABWs6GBFAYviBjYAPawoYlFcJvZ6WFHEiiYWd0CXyb4yVrSxoo5FcZnsa2RFJSs6WRQ3kH21rOhlRTGLomUr+7pZUc6KdhZF3VbsJ7HX1IqqVvS0oqhF0dKVfX2tKGtFW4uisiv7SlvR2IrKFmVs4Bn4BKC2Fb0tihvIvvpW9LYorhV7Fa7ocEWBK9OwhIcm/M8TdgPZV+OieAZDGh7W8FCGhzMs+9Mwh30C0OeKQhdlmMaegU8ACl0U14q9bleUu6LZFdUuHjc8A7uAhlfUu6LfRfEM7AJqXtHxipIXxQ3sArpeUfSKphfFDewCCl/R9KK41gag9BWtr6h8ReeL4hnYBVS/ovcVxS+KZ2AX0P+K8le0vyhuYBdQAosGWFTAKG5gF9AEo7hM9hXBogkWVbDogVE8uA1AHSz6YFEGo3hwG4BOWJTCohFGcQMbgGJYNMOiFpbJBqAcFu2wqIdRXCv7k+yriUVPLEpi0RKjeAY2AGWxaIpFVYziGdgANMaiLhZ9McqQxj0DG4DOWJTGeCR0AxuA7liUxiiulX39sSiQRXss6mMUz8AGoEUWFbLokFE8AxuAKln0yKJIRnEDG4A+WZTJok1GcQMbgFJZtMkorpV9xbJolkWtLHpllCG9u8E71HfX2gUmu4CKWXTMomAWDTOKG9gFFM2iZRY1M8rYYMjz2vM2gNkGMNsANM6ichZ9syicUTTo7QJ6Z1E6i9YZRfXeLjCPPAqfAFTPKG5gF9BAi/pZ9M8obmAXUEPj+dtlsq+FFjW06KFFCY3iwW0AumhRRosmGk/sHtwGoJAWjbSoo1HcwAaglRa1tOikUdzABqCalnlkB/wLDXDtiA4Y2QEjPGAkB9gA5pEfMAIERoKADUBPjU8KnoENQF0tumpRVqO4gQ1AZy0Ka9FYo7iBDUBxLRprFNfKvvJatNeiuhbdNYpnYANQYYv+WhTYKJ6BDUCPLUps0WKjuME28g/cxQagykZxAxuARltU2SiulX2ttqi1RactSm0Uz8AuoNsWxbZotlE8A7uAglu026LeRnEDu4CWW1TcouNGcQO7gKpbdNz4VOVaG4C6W/TdouwWbTeKZ3CO/AY38Olf5Y3iGdgFNN+i9ha9N4ob2AXU36L7FuU3ihtcIwbCXWR/ln0VuOjARQkuGnAUD24DUISLJlzU4Cge3AagDRd1uOjCUdzABqASF524KMRR3MAGoBcXxTiKa2V/ln0FuWjIRT0u+nEUz8AGoCYXHbkoyVE8g3dEWLiLDUBTjuIGNgCFuWjLRV2O4gY2AK25qMtRxtrPEAxTMHwC0JuL4hxlsawW8zBsANpzFOMwbABKdNGgiwodxQ1sAJp0UaOLHh3FDWwA6nTRo6O4VvZV6qJTF4W6aNRRPAO7gGJdtOqiVkfxDOwC2nVRrYtuXRa7gIZdVOyiXxcFO4ob2AX07KJgR3GtDUDXLsp20bSLqh1l5IC4gV1A3S76dhTPwC6gdheduywjRMQusIwokZElMoJERpKIXUD/LssIFRH7ZUSJjCwRn/617ygeV/YV8KKBFxU8iseVfS28qOFFD4/iBrKvihddvCjjUUaCiRvIvkJeNPIorhV7xbxo5kU1L3p5FNfKvnpe9POinEdxrezr6EVJLxp6FDeQfUW9aOpFTY/iBrKvrRd1PYprxV5jLyp70dmLwh7FtbKvtxfFvWjtUVwr+8p70d6L6h7FDc6xgWfgE4D+HsUNZF+NL3p8FNdeI8nFM/Dmr8wXTb4sNgB9vij0RaMv6nwU19oAtPqi1hedPoob2ABU+6LbF8U+ihvYAPT7ouBHca3s6/hFyS9aflHxo7jWBqDpF1W/6PlRXGsDUPeLvl+U/ShuYAPQ+YvSXzT+KG5gA1D8i+YfxWVir/gXzb+o/lHGshFmY5qN7Ov/UQy0kX0VwOgARgmQYqqN7OsBRhEwmoBZM+Jw3ED2tQGjDkhxrdivYq8aGN3AKAZGM5DiGci+gmC0A6MeSPEMZF9LMCqC0RGkuIHsqwpGTzCKgpSRyOMZ+ASgKEhxrdjrDEZpMBqDURmkeAayrzkYtcHoDVI8A9lXH4zuYJQHKW4g+zqEUSCMBmFW2dcjjCJhNAgprhV7ZcJoE0aVMLqEFM/ALrCOSKGRJ2QXWEeq0IgV+pcr5AZ2gXVEC41soREuNJKF7AKrXUDBMBqGUS2kuHYboURuYAPQMYySIcUzsAvoGkbRMJqGFM/ALqBwGG3DqBtS3MAuoHUYlcPoHFLGBp6BXWCV/VX2NQ+jehjdwygeUjy4DUD/MAqI0T6keHAbgBJitBCjgkhxAxuAJmJUEaOHSHGDc2zgwW0Aq+yvsr/Kvl5iFBOjlRi1RIpnYAPQToxqYnQTKZ6BDUBFMfqJUVCkuIENQE8xSorRUqS4gQ1AWTFaihTXyr7CYjQWo64YfUWKZ2ADUFuMzmKUFrPaAFQXo7sYxcVoLlLcwAagwBjtxagvUtzABqDFGPVFimtlX5MxqozRY4wiI8UzsAvoM0aZMdqMlBFPZT6VXUCjMSqNlMViUJVdQK0xeo2Uy2JalV1Ar5HiWhuAimN0HKPgGA1HijFXdgFFx2g5Rs2RYtaVXUDbMaqO0XWkuIFdQOUx+o5ReKS4gV1A7zGb7G+yr/YYvccoPkbrkeLBbQDKj9F+jOojxYPbADQgowIZ/UeKG9gA1CCjBxklSIob2AB0IaMMSXGt7G+yrxQZrcioREYnkuIZ2ABUI6MXGcVIimdgA9CPjHJktCMpIx7MM7ABaEhGRZLiBjYATcmoSFJcO8LFRrrYiBezAShLUkbKmBuMnLERMmYD2EbU2MgaG2FjNgC1SYob2AC0J6M6Gd1JihvYAFQooztJGWs9A9nXo4wSZbQoKZ6BXUCZMpqUUaWkeAZ2AY3KqFNGn5LiBnYBtcroVEapkuIGdgHdyihVUlxrA9CvjIJltCujXknxDOwCWpZRsYyOJcUzsAuoWkbPMoqW2ewC6pbRt4yyZbQtKW5gF1C6pLhM9nUuo3QZrcuoXFI8uA1A8zKql9G7pHhwG4D6ZfQvo3xJcQMbgA5mlDCjgUlxAxuAImY0MSmulf3tHUFxbuAfAfUxo5BJ8QxsAHqZUcqMVibFM7ABKGdGMzOqmZSRNWfYnA1APTP6mRQD52wAaprRz6QYOCf7qprR1YyiZjQ1KcbV2QAUNrOPPEobwG4DUNqM1mZUNqOzSRkbeAYdcXduYAPYbQDqm9HfjOImxbWyr8MZJc5ocEaFk+IZTCMwzw18+tfjpHgGdgF1zuhyRpmT4gZ2AZ3OKHRGo5MyIvc8A7uARifFtTYA5c5od0a1M7qd2e0CGp5R8Yx+ZxQ8KZ6BXUDPM0qe0fKkuIFdQNkzmp5R9aS4gV1A45PiccVe2TPanlH3pHhc2df4jMpndD4pHlf21T6j9xnFT4obyL7uZ5Q/s4+kQdnfR9bgCBscaYMjbnBkDY6wwZE2OOIGR97gCByUfXXQ6INGITTaoBTXyr5SaLRCoxJKcQPZ1wyNamj0QiluIPvqodEPpbhW7FVEoyMaJdFoiFLGWs9A9jVFoyZKca3sa4tGXTS6opQRmOgGsq8zGoXR7LKvNhq90SiOUlwr9rqjUR6N9mhURymutQFokEaFNPqjFNfaANRIo0caJVKKG9gAdEmjTBpNUoob2AAUSqNRSnGt7CuVRqs0aqXRKaWMwEfPwAagWxrFUoprbQD6pVEwjXYpxQ1sAEqm0TKNiill5EaO4EiTI20Ah9grmkbTNKqm0TWlGB4p++qm0TeNwmkO2Vc5jc5plE6jdUpxgxFJK/uap1E9pbiB7GufRv00+qcU14r9Ifa6qFFGjSZqVFEpnoHsa6RGHTX6qBTPQPbVUqOTGqVUihvIvm5qFFOjmUoZG3gGPgFoplJcK/ZKqtFSjYpqdFQpnoHsq6pGTzWKqhTPYBmxm+4i+9qqFDeQfaXVaKxGZZXiBrKvuRqVVYprxV57Neqr0V2N8irFM7AL6LBGgTUarDnsAnqsUWSNFmvUWCkj/9MzsAuoskaXleIGdgGV1uiyUlxrA1BrjV5rlFqj1UrxDOwCyq3RbI1qK8UzGMGjI3nUJwD9VoobjATSEUE68kftAsdIIR0xpCOHVPYP2Vd1ja5rlF2j6Urx4DYAhddovEbdleLBbQBar1F7jc4rxQ1sAKqv0X2N4ivFDWwA+q9RgM0h+4fsH7KvCBtN2KjBRg+W4hnYANRhowsbZViKZ2AD0ImNQmw0YiluYANQjI1WbNRiKW5gA9COjVpsDtk/ZF9DNiqy0Y+NgizFM7AB6MlGSTZashTPwAagLBtN2ajKUtzABqAxG3XZ6MtS3MAGoDYbfVkKa0/ZV52N7mwUZ6M5S1ktm2W3nJbLclsey2uCrBvYBU67gCZtVGmjRxtFWoobjGhqu4AiLWWs9QxsAEq10aiNSi3FM7ALaNZGrTZ6tRTPwC6gXhvd2ijXUtzALqBjGwXbaNhS3MAuoGhLcZns69lG0TaatlGzpXhwG4C2bdRto2tL8eA2AJXb6NxG4TanDUDtNnq3UbyN1i3FDWwAyrfRvqW4VvZP2dfCjRpudHCjhEvxDGwAurhRxI0mLsUzsAEo5EYbN+q4OW0ASrnRyo1KbnRyKW5gA1DNjU4uxbWyr54b/dwo50Y7l+IZ2ACUdKOhGxVdimdgA9DUjZpu9HQpbmADUNeNrm6UdSluYAPQ2Y2yLsW1sq+3G8XdaO3mHDHEI4d4BBGPJGKf/s+RRTzCiP+lEbuLHwHOEUg8EontAnq8UeKNFi/FDewCyrzR4qW41gag0BuN3qjzRp+X4hnYBdR6o9MbpV6KZ2AX0O2NYm80eyluYBdQ8I12b9R7KW5gF9DypbhM9pV8o+UbNd/o+Oa0AWj6RtU3ur5R9KV4cBuAvm8UfqPtS3EDG4DSb7R+o/JLcQMbgOZvVH8prpX9U/ZVgKMDHAXgaADnsgHoAUcROFrAUQOmrJbNsltOy2W5LY/lNQraDWwAlw1ALTh6wVEIprhW9q8RTO8TgGZwVIMpnoENQEM46sHRD6Z4BjYANeHoCEdJmOIGNgBd4SgKR1OY4gY2AIXhaApTXCv7SsPRGo7KcHSGKZ6BXUB1OHrDURymeAZ2Af3hKA9He5jiBnYBJeJoEEeFOJddQJE4msRRIaa41gagTRx14ugSR5mY4hnYBXSKo1AcjWKKZ2AXUCyOVnHUiiluYBfQLo5qcXSLKW5gF1Axpnhcsdcujnpx9IspHlf2VYyjYxwlY4rHlX094ygaR9OY4gayr2wcbeOoG1PcQPY1jqNyHJ1jimvFXvU4usdRPo7mMcW1sq+AHA3kqB9TXCv7WshRQ44OMsUNZF8VObrIUUSmuMGIIx955COQfCSSj0jykUk+QslHKvm/WHLXjmDykUzux3+9ZIprZV89OfrJUU6muIHs6yhHSTkayhQ3uMcGnoFPAJfYX2KvrBxt5agrR1eZ4lobgMpydJajsJzLBqC2HL3lKC5Ha5niBjYA5eVoL0d1meIGNgAN5qgw55L9S/a1mKPGHD3mKDFTXGsD0GWOMnM0mSmf8ex/llhqmS2LZbVslt1yWi7LbXksr9nuLhN71eboNke5meIy2ddvzj3GUvjx/85Y5sFlX8s5as4UN5B9TeeoOkfXmeIGsq/uHH3nKDznFvtb7G+xV36O9nNUn6P7TPEMZF8FOvrPUYCmeAayrwcdJehoQVPcQPaVoaMJHVVoihvIvkZ0VKEprhV7reioRUcnOkrRFM9A9nWjoxgdzWiKZyD7CtLRjo56NMUNZF9LOirS0ZGmuIHsq0pHRzq32N9iry4dfekoS0dbmuIZ2AWUpqMxHZVpimdgF9Ccjtp09KYpbmAXUJ+O7nSUpyluYBfQoY7yNMW1NgA96ihSR4s6atQUz8AuoE0dVeroUlM8A7uASnX0qaNQTXEDu4BedZSqo1VNcQO7gHI1ZSzz4LKvXB3t6qhWUzy4DUDDOirW0a+meHAbgJp17jGbYAwnGNMJxniCMZ9gDCgYEwrGiIIxo2AMKfg3pcC1Y0aB7GteR/U6etdRvKZ4BjYA/esoX0f7muIZ2ACUsKOBHRVsihvYADSxo4YdPWyKG9gA1LGjh01xreyrZEcnOwrZ0cimeAY2AMXsaGVHLZviGdgAtLOjmh3d7Dw2AA3tqGhHPzsK2pTVsll2y2W5LY/ltbiBN39VbcpkcQO7gLp29LUph+W0uItPAErbFDewC+huR3E7mtsUN7ALKHBHc5viWhuAEne0uKPCHR1uimdgF1Dljh53FLkpnoFdQJ87ytzR5qaMDTwDu4BGd1S6KW5gF9DsprhM9hW7o9kd1e7odVM8uA1AvTv63VHupnhwG4COd5S8o+FNcYNlbODBbQBq3hQ3sAFoe0fdm+Ja2X9kX+07et9R+o7WN8UzsAEof0fzO6rfFM/ABqABHvXv6H9T3MAGoAYeHfAogVPcwAagCx4lcIprZV8fPArh0QaPOngeG4BSeLTCoxIenXCKZ2ADUA2PXngUwyluYAPQD49yeLTDKW5gA1ASj3Y4xbWyrygeTfGoiUdPnOIZ2AXUxaMrHmVximdgF9AZj8J4NMYpbmAXUByP1njUxiluYBfQHo/aOMW1NgAN8qiQR388CuQUz2CMKhmzSnz61yKneAZjbskYXDKmltgFnjG7ZAwv+Te9xA3sAo9dQKs8auUUl8m+VnnUyqNXHqVyige3AeiWR7k8muUUD24DUDCPhnnUyyluYAPQMo+aeXTMKZ/DU/4ssdSyWFbLZtkth+Wy3JbH8lrcwAagd06ZLLPFXWwAyucUN7AB6KBHAT0a6BQ3sAEookcDneJa2VdGjzZ6VNGji07xDGwAKunRR49COsUzsAHopUcpPVrpFDewASinRzM9qumUsYFnYANQTae4Vva11KOmHh31KKlTPAO7gK56FNWjqU7xDOwCCuvRVo+6OsUN7AJa61FZj846xQ3sAqrr0VmnuNYGoL4e/fUor0d7neIZ2AWU2KPBHhX2vHYBRfZoskeNPXrsFDewC6izR5c9yuwUN7AL6LRHkT2a7FFljy57lNmjzR519uizR6E9Gu1RaY9Oe5Tao9UetfbotUexPZrtUW2PbnuU26PdHvX26LdHwZ3iWonXc4+iezTdKa4Ve2X3aLtH3Z3iWrHXeI/Ke3TeKW4g9mrv0XuP4jvFDcRe9z3K79F+zyvx+u9RgI8GfFTgKa4Vey34qMFHD57iWrFXhY8ufJThKW4g9vrwUYiPRjzFDcReKT5a8XnH2KIxs2gMLRpTi8bYIm/+7xhcNCYXjdFFY3aRT//vv+lFY61nIPta8hQ3kH1F+WjKR1We4gayry0fdfm8Y56R2GvMR2U+OvNRmqesls2yWw7LabktY+1r4QzU5yluIPsa9FGhjw49xQ1kX40+evT5xmw6iVejjx59FOmjSR9V+ujSR5k+2vRRp48+fRTqo1Eflfro1EepPlr1UauPXn0U66NZH9X66NZHuT7a9RTXSvzng7+2fdTto2sfZXuKZ+Anf537KNxH457iGXjzV7yP1n3U7ilu4M1f+z6q99G9p7iBN38V/OjeU1zrfV8NP3r4UcKPFj7FM/CTvzJ+NPGjik/xDLz5a+RHHT/6+BQ38Oavlh+d/CjlU9zAm79ufpTyKWOtZ+DHfwX9aOdHPZ/iGdgFtPSjoh8dfYpnYBdQ1Y+efhT1KW5gF9DXj7J+tPUpbmAXUNqPtj7FtTYAxf1o7kdtP3r7FM/ALqC+H939KO9TPAO7gA5/FPijwZ/PLqDHH0X+aPFHjZ/iBnYBbX6Ky2RfmT/a/FHnjy4/xYPbAFT6o9MfhX6KB7cB6PVHsT9a/RQ3sAEo90e7P6r9FDewAWj4R8Wf4lrZ/2Rf1T+6/lH0j6Y/xTOwASj8R9s/6v4Uz8AGoPUflf/o/FPcYEwwswF8Y47ZGGQ2JpmNUWZjltkYZDYmmY1RZv9mmTmYbEwzG+PMxjyzMdCMBtC/MdJszDQbQ83GVDMaQP/GXLMx2GxMNnO0mSkANQCgBgBQ3MAZZ6YAVPef4lpnnJkCUFMA+jfGUzrn7K9joJobOKbSAIAaAEDxDBx3ZgpADQCoAQAUN3DmmSkANQCgBgBQ3MDhZ6YAVPef4lqHn5kCUFMAagBADQDonxPQTAGoKQA1AKAGAFA8A+egmQJQAwBqAADFDRyGZgpADQCoAQAUN1jGVDh3cR7anwPRDACoAQA1AKC6/xQP7lg0AwBqAEB1/yljpJwHXz24E9J0/ylu4IA0AwBqAEB1/ylu4LQ0AwBqAADFtU5L+3NcmikANQWgBgDUAACKZ+DQNFMAagBADQCgeAZOTjMFoAYA1AAAihs4Ps0UgBoAUAMAKG7gHDVTAKr7T3HtMWbiucHhBo5SMwCA4hk4Tc0UgBoAUAMAKJ6BI9VMAagBADUAgOIGzlUzBaAGANQAgP45X80UgJoCUN1/imsdsGYKQE0BqAEANQCA4hk4Zs0UgBoAUAMAKJ6Bs9ZMAagBADUAgOIGDlwzBaAGANQAAIobOHnNFIDq/lNc6+Q1UwBqCkANAKgBAJQxGtANHjdwApsBABTPwCFspgDUAIAaAEBxAyexmQJQAwBqAABlbOAZOJPtz2Fsf05jMwCgBgDUAIDq/lM8uDPZDACoAQDV/a8zQGsAQA0AqAEA1f2vg0BrAEANAKgBANX9r9NAawBAM2Yb2gAyphuO8YZjvuEYcBg3GCMOx4zDMeRwTDm0ARgA0IwJtTYAUwBqCkANAKgBAHVEaE0BqCkANQCgBgDUOaE1BaCmAFT3v84JrYNCawpATQGoAQA1AKBODa0pADUFoAYA1ACAOjq0pgDUFIAaAFADAOr80JoCUFMAagBADQCoQ0RrCkBNAajufx0iWqeI1hSAmgJQAwBqAEAdJ1pTAGoKQA0AqAEAdaZoTQGoKQA1AKAGANTBojUFoKYA1ACAGgBQp4vWFICaAlDd/zpdtI4XrSkANQWgBgDUAIA6Z7SmANQUgBoAUAMA6rDRmgJQUwBqAEANAKgTR2sKQE0BqAEANQCgjh2tKQA1BaBOG63uf3X/q/tf3f86drS6/9X9r+5/df/r7NHq/lf3v7r/1f2vA0ir+1/d/+r+V/e/TiGt7n91/6v7X93/Ooa0ziGtAQA1AKAGAFT3vw4krQEANQCgBgBU979OJa0BADUAoAYAVPe/jiatAQA1AKAGAFT3v84nrQEANQCgBgDU+aR1QGkNAKgBADUAoLr/dVppDQCoAQA1AKC6/3VkaQ0AqAEANQCguv91bmkNAKgBADUAoLr/dXhpDQCoAQA1AKAOL63TS2sAQA0AqAEA1f2vY0xrAEANAKgBANX9r7NMawBADQCoAQAd80zHQNMx0XSMNDUAoGOo6ZhqOsaajrmmBgB0TDUdY03HXFMDAGoAQMd40zHfdAw4HRNODQDomHE6hpyOKadjzKkBAP036HRMOv036tQzsAH8m3Y6xp2Oeadj4KkN4N+oU7HX/a/uf8fY0zHzdAw9HVNPdf87Zp+Owadj8ukYfar73zEAdUw/HeNPx/xT3f+OKahjBOqYgTqGoOr+d4xCHTNQxxDUir0pAB3zUMcw1DENdYxDNQWgYyjqmIg6RqKOmaimAHRMRh1jUcdc1DEY1RSAjvGoYzbqGI46pqOaAtAxI3UMRx3TUSv2pgDUFICOSaljVOqYlTqGpZoC0DEudcxLHQNTx8RUUwA6ZqaOoaljauoYm2oKQMfg1DE5dYxOHbNTTQHomJw6RqeO2ammANQUgI4RqmOG6hiiOqaomgLQMUd1DFIdk1THKFVTADqGqY5pqmOc6pinagpAx0TVMVJ1zFQdQ1VNAegYqTpmqo6hqqYA1BSAjtmqY7jqmK46xquaAtAxYHVMWB0jVseMVVMAOqasjjGrY87qGLRqCkDHqNUxa3UMWx3TVk0B6JizOgatGgBQAwA6Zq6Ogatj4uoYuWoAQMfg1TF1dYxdHXNXDQDomL46Rq+O2atj+KoBAB0jWMf81TGAdUxgNQCgYw7rGMA6JrBW9k0B6BjGOiaxjlGsYxarKQAdE1nHONYxj3UMZDUFoGMs65jJOoayjqmspgB0zGY1AKAGANTRrDUFoKYAVPe/jmalODtY9k0BqAEANQCgDmutKQA1BaAGANQAgDqxtaYA1BSAGgBQAwDq2NaaAlBTAGoAQA0AqLNbO4059TYA3f86u7UOb60pADUFoAYA1ACATmPisV3AFIBO/wYfu3aMPh6zj+0C05h+PMYfj/nHYwCyXWAaI5DtAg51rSkANQWguv91qGud6lpTAGoKQA0AqAEAdbxrTQGoKQA1AKAGANQZrzUFoKYA1ACAGgBQB73WFICaAlADAGoAQJ32WlMAagpAHfRaJ73WAIAaAFADAKr7X0e+1gCAGgBQAwCq+1/nvtYAgBoAUAMAqvtfh7/WAIAaAFADAKr7XyfA1gCAGgBQAwDqBNg6ArbOgK0pADUFoAYA1ACAOgy2pgDUFIAaAFADAOpE2JoCUFMAagBADQCoY2FrCkBNAagBADUAoM6GrSkANQWguv91NmwdDltTAGoKQA0AqAEAdVJsTQGoKQA1AKAGANRxsTUFoKYA1ACAGgBQZ8bWFICaAlADAGoAQB0cW1MAagpAdf/r4Ng6ObamANQUgBoAUAMA6gjZmgJQUwBqAEANAKhzZGsKQE0BqAEANQCgDpOtKQA1BaAGANQAgDpRtqYA1BSA6v7XibJ1pGxNAagpADUAoAYA1NmyNQWgpgDUAIAaAFAHzNYUgJoCUAMAagBAnTJbUwBqCkANAKgBAHXUbE0BqCkAdcpsHTNbAwBqAEANAKjuf503WwMAagBADQCo7n8dOlsDAGoAQA0AqO5/nTxbAwBqAEANAKjufx0/WwMAagBADQCo42fr/Nk6gLamANQUgBoAUAMA6iTamgJQUwBqAEANAKjjaGsKQE0BqAEANQCgzqStKQA1BaAGANQAgDqYtqYA1BSAzmP++RiAPiagy/78bw66a8cU9DEG3QYwj2HoYxL6GIVuAzAFoKYA1ACAGgBQB9bWFICaAlADAGoAQJ1aW1MAagpAdf/r1No6tramANQUgBoAUAMA6vzamgJQUwBqAEANAKhDbGsKQE0BqAEANQCgTrKtKQA1BaAGANQAgDrOtqYA1BSA6v7XcbZ1nm1NAagpADUAoAYA1MG2NQWgpgDUAIAaAFCn29YUgJoCUAMAagBAHXFbUwBqCkANAKgBAHXObU0BqCkAdbxtdf+r+1/d/+r+1zm31f2v7n91/6v7X4fdVve/uv/V/a/uf514W93/6v5X97+6/3XsbXX/q/tf3f/q/te5t3XwbQ0AqAEANQCguv91Am4NAKgBADUAoLr/dQxuDQCoAQA1AKC6/3UWbg0AqAEANQCguv91IG4NAKgBADUAoA7ErRNxawBADQCoAQDV/a/jcWsAQA0AqAEA1f2vM3JrAEANAKgBANX9r4NyawBADQCoAQDV/a/TcmsAQA0AqAEAdVpuHZfbeWDvzd8AgOr+17m5NQCgBgDUAIDq/tfhuTUAoAYA1ACA6v7XCbo1AKAGANQAgOr+1zG6NQCgBgDUAIA6RrfO0a0BADUAoAYAVPe/DtStAQA1AKAGAFT3v07VrQEANQCgBgBU97+O1q0BADUAoAYAVPe/ztetAQA1AKAGANTZutX9r+5/df+r+1+H7Fb3v7r/1f2v7n+dtFvd/+r+V/e/uv913G51/6v7X93/6v7XmbvV/a/uf3X/q/tfh+7WqbsUz8Cnf1MAagBADQCo83drCkBNAagBADUAoA7hrSkANQWgBgDUAIA6ibemANQUgBoAUAMA6jjemgJQUwCq+1/H8VI8A2/+pgDUAIAaAFCH89YUgJoCUAMAagBAndBbUwBqCkANAKgBAHVMb00BqCkANQCgBgDUWb01BaCmAFT3v87qrcN6awpATQGoAQA1AKBO7a0pADUFoAYA1ACAOrq3pgDUFIAaAFADAOr83poCUFMAagBADQCoQ3xrCkBNAajufx3iW6f41hSAmgJQAwBqAEAd51tTAGoKQA0AqAEAdaZvTQGoKQA1AKAGANTBvjUFoKYA1ACAGgBQp/vWFICaAlAH+9bJvjUAoAYA1ACA6v7XEb81AKAGANQAgOr+1zm/NQCgBgDUAIDq/tdhvzUAoAYA1ACA6v7Xib81AKAGANQAgDrxt478pXgGsm8KQA0AqAEAdfhvTQGoKQA1AKAGANQJwDUFoKYA1ACAGgBQxwDXFICaAlADAGoAQJ0FXFMAagpAdf/rLGDKanGDuIENwACAOh24pgDUFIAaAFADAOqI4JoCUFMAagBADQCoc4JrCkBNAagBADUAoA4LrikANQWguv91WHCdFlxTAGoKQA0AqAEAdWxwTQGoKQA1AKAGANTZwTUFoKYA1ACAGgBQBwjXFICaAlADAGoAQJ0iXFMAagpAdf/rFOE6RrimANQUgBoAUAMA6jzhmgJQUwBqAEANAKhDhWsKQE0BqAEANQCgThauKQA1BaAGANQAgDpeuKYA1BSAOlm4jhauAQA1AKAGAFT3v84YrgEANQCgBgBU978OGq4BADUAoAYAVPe/ThuuAQA1AKAGAFT3v44crgEANQCgBgDUkcN15nAdOlxTAGoKQA0AqAEAdfpwTQGoKQA1AKAGANQRxDUFoKYA1ACAGgBQ5xDXFICaAlADAGoAQB1GXFMAagpAdf/rMOI6jbimANQUgBoAUAMA6mjimgJQUwBqAEANAKjziWsKQE0BqAEANQCgDimuKQA1BaAGANQAgDqpuKYA1BSA6v7XScV1VHFNAagpADUAoAYA1JnFNQWgpgDUAIAaAFAHF9cUgJoCUAMAagBAnV5cUwBqCkANAKgBAHWEcU0BqCkA1f2vI4zrDOOaAlBTAGoAQA0AqMOMawpATQGoAQA1AKBONK4pADUFoAYA1ACAOta4pgDUFIAaAFADAOps45oCUFMA6ljjOte4BgDUAIAaAFDd/zrguAYA1ACAGgBQ3f865bgGANQAgBoAUN3/Ouq4BgDUAIAaAFDd/zrvuAYA1ACAGgBQ5x3Xgcd14nFNAagpADUAoAYA1NHHNQWgpgDUAIAaAFDnH9cUgJoCUAMAagBAHYJcUwBqCkANAKgBAHUSck0BqCkA1f2vk5DrKOSaAlBTAGoAQA0AqHORawpATQGoAQA1AKAOR64pADUFoAYA1ACAOiG5pgDUFIAaAFADAOqY5JoCUFMAqvtfxyTXOck1BaCmANQAgBoAUAcm1xSAmgJQAwBqAECdmlxTAGoKQA0AqAEAdXRyTQGoKQA1AKAGANT5yTUFoKYAVPe/zk+uA5RrCkBNAagBADUAoE5SrikANQWgBgDUAIA6TrmmANQUgBoAUAMA6kzlmgJQUwBqAEANAKiDlWsKQE0BqPOUq/tf3f/q/lf3vw5Wru5/df+r+1/d/zpdubr/1f2v7n91/+uI5er+V/e/uv/V/a9zlqv7X93/6v5X978OWq6TlmsAQA0AqAEA1f2vI5drAEANAKgBANX9r3OXawBADQCoAQDV/a/Dl2sAQA0AqAEA1f2vE5hrAEANAKgBAHUCcx3BXAMAagBADQCo7n+dx1wDAGoAQA0AqO5/HcpcAwBqAEANAKjuf53MXAMAug32fQLQ/a/jmWsAQA0AqAEAdTxznc9cAwBqAEANAKjufx3UXAMAagBADQCo7n+d1lwDAGoAQA0AqO5/HdlcAwBqAEANAKjuf53bXAMAagBADQCoc5vr4OYaAFADAGoAQHX/6wTnGgBQAwBqAEB1/+sY5xoAUAMAagBAdf/rLOcaAFADAGoAQHX/60DnGgBQAwBqAEAd5lzd/+r+V/e/uv91qnN1/6v7X93/6v7X0c7V/a/uf3X/q/tf5ztX97+6/9X9r+5/HfJc3f/q/lf3v7r/dcpzHfNM8Qx8+jcFoAYA1ACAOvC5pgDUFIAaAFADAOrU55oCUFMAagBADQCoo59rCkBNAagBADUAoM5/rikANQWguv91/jPFM/DmbwpADQCoAQB1GnRNAagpADUAoAYA1JHQNQWgpgDUAIAaAFDnQtcUgJoCUAMAagBAHQ5dUwBqCkB1/+tw6DoduqYA1BSAGgBQAwDqmOiaAlBTAGoAQA0AqLOiawpATQGoAQA1AKAOjK4pADUFoAYA1ACAOjW6pgDUFIDq/tep0XVsdE0BqCkANQCgBgDU+dE1BaCmANQAgBoAUIdI1xSAmgJQAwBqAECdJF1TAGoKQA0AqAEAdZx0TQGoKQB1knQdJV0DAGoAQA0AqO5/nSldAwBqAEANAKjufx0sXQMAagBADQCo7n+dLl0DAGoAQA0AqO5/HTFdAwBqAEANAKgjpuuMacpsWSyrZbccltNyWW7La3GtDcAUgJoCUAMAagBAnTtdUwBqCkANAKgBAHX4dE0BqCkA1f2vw6cpnoHsmwJQAwBqAEAdR11TAGoKQA0AqAEAdSZ1TQGoKQA1AKAGANTB1DUFoKYA1ACAGgBQp1PXFICaAlDd/zqduo6nrikANQWgBgDUAIA6p7qmANQUgBoAUAMA6rDqmgJQUwBqAEANAKgTq2sKQE0BqAEANQCgjq2uKQA1BaC6/3VsdZ1bXVMAagpADQCoAQB1gHVNAagpADUAoAYA1CnWNQWgpgDUAIAaAFBHWdcUgJoCUAMAagBAnWddUwBqCkAdZV1nWdcAgBoAUAMAqvtfh1rXAIAaAFADAKr7Xydb1wCAGgBQAwCq+1/HW9cAgBoAUAMAqvtfZ1zXAIAaAFADAOqM6zrkuk65rikANQWgBgDUAIA67rqmANQUgBoAUAMA6szrmgJQUwBqAEANAKiDr2sKQE0BqAEANQCgTr+uKQA1BaC6/3X6dR1/XVMAagpADQCoAQB1FnZNAagpADUAoAYA1IHYNQWgpgDUAIAaAFCnYtcUgJoCUAMAagBAHY1dUwBqCkB1/+to7Dobu6YA1BSAGgBQAwDqkOyaAlBTAGoAQA0AqJOyawpATQGoAQA1AKCOy64pADUFoAYA1ACAOjO7pgDUFIDq/teZ2XVodk0BqCkANQCgBgDU6dk1BaCmANQAgBoAUEdo1xSAmgJQAwBqAECdo11TAGoKQA0AqAEAdZh2TQGoKQB1jnYdpF0DAGoAQA0AqO5/nahdAwBqAEANAKjufx2rXQMAagBADQCo7n+drV0DAGoAQA0AqO5/HbBdAwBqAEANAKgDtuuE7Tpiu6YA1BSAGgBQAwDqrO2aAlBTAGoAQA0AqAO3awpATQGoAQA1AKBO3a4pADUFoAYA1ACAOnq7pgDUFIDq/tfR23X2dk0BqCkANQCgBgDUQdw1BaCmANQAgBoAUKdx1xSAmgJQAwBqAEAdyV1TAGoKQA0AqAEAdS53TQGoKQDV/a9zuetg7poCUFMAagBADQCoE7prCkBNAagBADUAoI7prikANQWgBgDUAIA6q7umANQUgBoAUAMA6sDumgJQUwCq+18HdteJ3TUFoKYA1ACAGgBQR3fXFICaAlADAGoAQJ3fXVMAagpADQCoAQB1iHdNAagpADUAoAYA1EneNQWgpgDUAd7V/a/uf3X/q/tfJ3lX97+6/9X9r+5/Hedd3f/q/lf3v7r/daZ3df+r+1/d/+r+18He1f2v7n91/6v7Xyd719HeNQCgBgDUAIDq/tcZ3zUAoAYA1ACA6v7XQd81AKAGANQAgOr+12nfNQCgBgDUAIDq/teR3zUAoAYA1ACAOvK7zvyuAQA1AKAGAFT3vw4ArwEANQCgBgBU979OAa8BADUAoAYAVPe/jgKvAQA1AKAGAFT3v84DrwEANQCgBgDUeeB1IHgNAKgBADUAoLr/dTJ4DQCoAQA1AKC6/3U8eA0AqAEANQCguv91RngNAKgBADUAoLr/dVB4DQCoAQA1AKAOCq+TwmsAQA0AqAEA1f2vI8NrAEANAKgBANX9r3PDawBADQCoAQDV/a/Dw2sAQA0AqAEA1f2vE8RrAEANAKgBAHV6eHX/q/tf3f/q/tcx4tX9r+5/df+r+19niVf3v7r/1f2v7n8dKF7d/+r+V/e/uv91qnh1/6v7X93/6v7XseJ1rjjFM/Dp3xSAGgBQAwDqhPGaAlBTAGoAQA0AqGPGawpATQGoAQA1AKDOGq8pADUFoAYA1ACAOnC8pgDUFIDq/teB4xTPwJu/KQA1AKAGANTx4zUFoKYA1ACAGgBQZ5DXFICaAlADAGoAQB1EXlMAagpADQCoAQB1GnlNAagpANX9r9PI6zjymgJQUwBqAEANAKhzyWsKQE0BqAEANQCgDievKQA1BaAGANQAgDqhvKYA1BSAGgBQAwDqmPKaAlBTAKr7X8eU1znlNQWgpgDUAIAaAFAHltcUgJoCUAMAagBAnVpeUwBqCkANAKgBAHV0eU0BqCkANQCgBgDU+eU1BaCmANTR5XV2eQ0AqAEANQCguv91iHkNAKgBADUAoLr/dZJ5DQCoAQA1AKC6/3WceQ0AqAEANQCguv91pnkNAKgBADUAoM40r0PNKbG4gTd/AwBqAEAdb15TAGoKQA0AqAEAdcZ5TQGoKQA1AKAGANRB5zUFoKYA1ACAGgBQp53XFICaAlDd/zrtvLfsmwJQUwBqAEANAKjzz2sKQE0BqAEANQCgDkGvKQA1BaAGANQAgDoJvaYA1BSAGgBQAwDqOPSaAlBTAKr7X8eh13noNQWgpgDUAIAaAFAHo9cUgJoCUAMA+l9Hd5AUWZIEUfBK0/aATI5DAnX/I4wrG9uFZ4zIhFO9MP0AgPk6+igAowAMADAAwHwifRSAUQAGABgAYL6TPgrAKADT/Z/vpM+H0kcBGAVgAIABAOaL6aMAjAIwAMAAAPPZ9FEARgEYAGAAgPl2+igAowAMADAAwHxAfRSAUQDm2+nz8fQBAAYAGABguv/zFfUBAAYAGABguv/zKfUBAAYAGABguv/zPfUBAAYAGABguv/zUfUBAAYAGABgPqo+X1Wfz6qPAjAKwAAAAwDM99VHARgFYACAAQDmI+ujAIwCMADAAADzpfVRAEYBGABgAID53PooAKMATPd/Prc+31sfBWAUgAEABgCYj6+PAjAKwAAAAwDMF9hHARgFYACAAQDmM+yjAIwCMADAAADzLfZRAEYBmO7/fIt9PsY+CsAoAAMADAAwX2UfBWAUgAEABgCYT7OPAjAKwAAAAwDM99lHARgFYACAAQDmI+2jAIwCMN3/+Uj7fKV9FIBRAAYAGABgPtc+CsAoAAMADAAw32wfBWAUgAEABgCYD7ePAjAKwAAAAwDM19tHARgFYD7cPl9uHwBgAIABAKb7P59wHwBgAIABAKb7P99xHwBgAIABAKb7Px9zHwBgAIABAKb7P190HwBgAIABAOaL7vNJ9/mm+ygAowAMADAAwHzcfRSAUQAGABgAYL7wPgrAKAADAAwAMJ95HwVgFIABAAYAmG+9jwIwCsB0/+db7/Ox91EARgEYAGAAgPny+ygAowAMADAAwHz+fRSAUQAGABgAYL4BPwrAKAADAAwAMB+CHwVgFIDp/s+H4OdL8KMAjAIwAMAAAPNJ+FEARgEYAGAAgPku/CgAowAMADAAwHwcfhSAUQAGABgAYL4QPwrAKADT/Z8vxM8n4kcBGAVgAIABAOZb8aMAjAIwAMAAAPPB+FEARgEYAGAAgPlq/CgAowAMADAAwHw6fhSAUQCm9j+1/6n9T+1/av9T+5/a/9T+p/Y/tf+p/U/tf2r/U/uf2v/U/qf2P7X/qf1P7X9q/1P7n9r/1P6n9j+fkZ/u/3T/p/s/3f/5nvx0/6f7P93/6f7PR+Wn+z/d/+n+T/d/viw/3f/p/k/3f7r/83n56f5P93+6/9P9n+/LT/d/uv/T/Z/u/3xsfrr/0/2f7v90/+eL89P9n+7/dP+n+z+fnZ/u/3T/p/s/3f/59vx0/6f7P93/6f7Px+en+z/d/+n+T/d/vkI/3f/p/k/3f7r/8yn66f5P93+6/9P9n+/RT/d/uv/T/Z/u/3yUfrr/0/2f7v90/+er9NP9n+7/dP+n+z+fp5/u/3T/p/s/3f/5Rv10/6f7P93/6f7Ph+qn+z/d/+n+T/d/vlY/3f/p/k/3f7r/U/uf2v/U/qf2P7X/qf1P7X9q/1P7n9r/1P6n9j+1/6n9T+1/av9T+5/a/9T+p/Y/tf+p/U/tf2r/U/ufb9hfOOsf/hSAUQAGABgA4MIN/Jc/BWAAgAEALtzAH38KwAAAAwBcGOCPPwVgAIABAC4M8MefAjDd/wtn/d2nAIwCMADAAADzrftRAEYBGABgAID54P0oAKMADAAwAMB89X4UgFEABgAYAODCAH/8KQDT/d+vF//r7z4FYBSAAQAGALhwA1uAAjAAwAAAF25gC1AABgAYAODCAFuAAjAAwAAAFwbYAhSA6f5fOGsBUABGARgAYACACzewBSgAAwAMAHDhBrYABWAAgAEALgywBSgAAwAMAHBhgC1AAbj4O3Y/DgAYAGAAgOn+X7yLD/EQT/ElXuJb/Iibovt/YYAFAAAYAGC6/xcGWAAAgAEALpz97++sG3j7FIABAAYAuHADC4ACMADAAAAXbmABUAAGABgA4MIAC4ACMADAAAAXBlgAFIDp/l846+1TAEYBGABgAIALN7AAKAADAAwAcOEGFgAFYACAAQD2zwKgAIwCMADAAAAXBlgAFIDp/l846+1TAEYBGABgAIALN7AFKAADAAwAcOEGtgAFYACAAQAuDLAFKAADAAwAcGGALUABmO7/hbMWAAVgFIABAAYAuHADW4ACMADAAAAXbmALUAAGABgA4OJvgBvYAgCAAQAuDLAFKAAXjnn7AIABAAYAmO7/hR+3AAAAAwBM9//Cj1sAAIABAKb7f2HA198AP24B6P5fGGABAAAGALhw1tv/5+1TAEYBGABgAIALN7AAKAADAAwAcOEGFgAFYACAAQAuDLAAKAADAAwAcGGABUABmO7/hbPePgVgFIABAAYA2D8LgAIwCsAAAAMAXLiBBUABGABgAIALAywACsAAAAMAXBhgAVAApvt/4ay3TwEYBWAAgP0BAP9uC0QBiAIQACAAwMW7+BAP8Sm+xEt8ix9hwH8G/GfAbYEoAOn+Xzh7CyAKQBSAAAABAC5+hQEzYM7O2bnB3GCmzIAZMAPmBjNlBsyADMgNMiXH8uM5m7M5m2P58ZzN2Tdn3xx78+NvfvzNj7+Z8mbAmwFvBrz58TdT3gx4M+DdgHc//m7Ku7Pvzr67wbsB7wa8O/vu7LsbvBvwbsCHsx/OfrjBhxt8mPJhwIcBHwZ8uMGHKR8GfBjwYcDDDR6mPJx9OPtwg4cBDwMezj6cfbjBw4CHAU9nn84+3eDpBk9TngY8DXga8HSDpylPA54GPP8GuMGnKZ/Ofjr76QafBnwa8Onsp7OfbvBpwKcBn85+OfvlBl9u8GXKlwFfBnwZ8OUGX6Z8GfBlwJcBX27wZcrL2ZezLzd4GfAy4OXsy9mXG7wMeBnwcvbl7LcbfLvBtynfBnwb8G3Atxt8m/JtwLcB3wZ8u8G3KT9+98exH8d+HPtx7Mfv/jj249iPYz+O/fjdX7/763d//e6vKb8G/Brwa8Cv3/015deAXwN+Dfj1u7+m/HP2n7P/3OCfAf8M+OfsP2f/ucE/A/4Z8M9Zbx8AEAAgAEC6/xfv4kM8xFN8iZf4Fj/ipvzn2f/n2QMAAgAEAEj3/8JZbx8AEAAg3f+Lv7Nu4O0DANL9vzDA2wcABABI9//CAG8fABAAoP88+/88ewBAAIAAAOn+XzhrAQAAAgCk+3/xd9YNLAAAQLr/FwZYAACAAADp/l8YYAEAAAIAXDjr7QMAAgAEAEj3/8JZCwAAEAAg3f8LZy0AAEAAgHT/LwywAAAAAQDS/b8wwAIAAAQAuHDMs9f9T/c/3f8Lx7x93f90/9P9v3DM29f9T/c/3f/+8/Z1/9P9T/c/3f8LA7x93f90/9P9v3DWs//Ps6cARAEIABAA4MINvH0KQACAAAAXbuDtUwACAAQAuDDA26cABAAIAHBhgLdPAUj3/+LvrBu8DHgZ4O0DAC7cwNunAAQACABw4QbePgUgAEAAgAsDvH0KQACAAAAXBnj7FIB0/y+c9ewpAFEAAgAEALhwA1uAAhAAIADAhRvYAhSAAAABAPrPFqAARAEIABAA4MIAW4ACkO7/hbMWAAUgCkAAgAAAF25gC1AAAgAEALhwA1uAAhAAIADAxQ2gAEQBCAAQAODiXXyIh3iJb/EjfoWzFsAsAABAAIAAAOn+XzzFp/gSplgAswAAAAEAAgCk+39hgAUAAAgAcOGstz9vnwIQBSAAQACACzewACgAAQACAFy4gQVAAQgAEADg4m+AG1gAAIAAABcGWAAUgHT/L5z19ikAUQACAAQAuHADC4ACEAAgAMCFG1gAFIAAAAEALgywACgAAQACAFwYYAFQANL9v3DW26cARAEIABAAoNkCFIAoAAEAAgBcuIEtQAEIABAA4MIAW4ACEAAgAMCFAbYABSDd/wtnLQAKQBSAAAABAC7cwBagAAQACABw4Qa2AAUgAEAAgAsDbAEKQACAAAAXBtgCFIALx7x9AEAAgAAA6f5f+HELAAAQACDd/ws/bgEAAAIApPt/YYAFAAAIAJDuf7MAAAABAAIAXDjr7c/bpwBEAQgAEADgwg0sAApAAIAAABduYAFQAAIABAC4MMACoAAEAAgA0CwACkAUgHT/L5z19ikAUQACAAQAuHADC4ACEAAgAMCFG1gAFIAAAAEALgywACgAAQACAFzcAApAFIB0/y/exYd4iKf4Ei/xLX7EDQAABAC4mEiY4j8BAAAXBtgCFIAAAAEALv4GuIEtoPt/4awFQAGIAhAAIADAhRvYAhSAAAABAC7cwBagAAQACABwYYAtQAEIABAA4MIAW4ACUN5+3j4AIABAAIB0/y/8uAUAAAgAkO7//Y4ftwAAAAEA0v2/MMACAAAEAEj3/8IACwAAEADgLuqst5+3TwGIAhAAIADAhRtYABSAAAABAO5/nxtYABSAAAABAC4MsAAoAAEAAgBcGGABUADS/b9w1tunAEQBCAAQAODCDSwACkAAgAAAF25gAVAAAgAEALgwwAKgAAQACABwYYAFQAFI9//CWW+fAhAFIABAAIALN7AFKAABAAIAXLiBLUABCAAQAODCAFuAAhAAIADAhQG2AAUg3f/7/4KzFgAFIApAAIAAABduYAtQAAIABAC4cANbgAIQACAAwIUBtgAFIABAAIALA2wBCsD9P8/veva6/+n+p/t/4Xe9fd3/dP/T/b/wu96+7n+6/+n+Xxjg7ev+p/uf7v+FAd6+7n+6/+n+X9zZN88eABAAIABAuv8XH+IhnuJTvMS3+BG/whRv/83bBwAEAAgAkO7/hQHePgAgAMCFs549ACAAQACAdP8vnPX2AQABANL9v3DW2wcABABI9//CAG8fABAAIN3/CwO8fQBAAIALZ/s76wb++AMA0v2/cNYCAAAEAEj3/8JZCwAAEAAg3f9bFgZYAACAAADp/l8YYAEAAAIAXDjr7QMAAgAEAEj3/8JZCwAAEAAg3f8LZy0AAEAAgHT/LwywAAAAAQDS/b8wwAIAAAQAuHDMs9f9T/c/3f8Lx7x93f90/9P9v3DM29f9T/c/3f8LA7x93f90/9P9vzDA29f9T/c/3f8LZz37N8+eAhAFIABAAIALN/D2KQABAAIAXLiBt08BCAAQAODCAG+fAhAAIADAhQHePgUg3f8LZz17CkAUgAAAAQAu3MDbpwAEAAgAcOEG3j4FIABAAICLvwFu4F8AAIAAABcGePsUgHT/L5z17CkAUQACAAQAuHADW4ACEAAgAMCFG9gCFIAAAAEALgywBSgAAQACAFwYYAtQANL9v3DWAqAARAEIABAA4P6A/U/8JybexLv4EA/xFF/iJb7Fj7gpAIAAABcG2AIUgAvHvH0AQACAAADp/l/4cQsAABAAIN3/Cz9uAQAAAgCk+39hgAUAAAgAkO7/hQEWAAAgAMCFs97+u7dPAYgCEAAgAMCFG1gAFIAAAAEALtzAAqAABAAIAHBhgAVAAQgAEADgwgALgAKQ7v+Fs94+BSAKQACAAAAXbmABUAACAAQAuHADC4ACEAAgAMCFARYABSAAQACA+0eGARYABSDd/wtnvX0KQBSAAAABAC7cwBagAAQACABw4Qa2AAUgAEAAgAsDbAEKQACAAAAXBtgCFIB0/y+ctQAoAFEAAgAEALhwA1uAAhAAIADAhRvYAhSAAAABAC4MsAUoAAEAAgBc/A1wA1vg3dt/9/YBAAEAAgCk+3/hxy0AAEAAgHT/L/y4BQAACACQ7v+FARYAACAAQLr/FwZ8/w3w4xbAu7f/7u2/e/sUgCgAAQACAFy4gQVAAQgAEADgwg0sAApAAIAAABcGWAAUgAAAAQAuDLAAKADp/l846+1TAKIABAAIAHDhBhYABSAAQACAPiwACkAUgAAAAQAuPsRDPMWXeIlv8SNuiu7/hbPePgUgCkAAgAAAF5/CAFsAABAA4MINbAEKQACAAAAXBtgCFIAAAAEALgywBSgA6f5fOGsBUACiAAQACABw4Qa2AAUgAEAAgAs3sAUoAAEAAgBcGGALUAACAAQAuDDAFqAA3L/THfP2AQABAAIApPt/4cctAABAAIB0/y/8uAUAAAgAkO7/hQEWAAAgAEC6/xcGWAAAgAAAF856+x/ePgUgCkAAgAAAF25gAVAAAgAEALhwAwuAAhAAIADAhQEWAAUgAEAAgAsDLAAKQLr/F856+xSAKAABAAIAXLiBBUABCAAQAODCDSwACkAAgAAAFwZYABSAAAABAC4MsAAoAOn+X/yddQNvnwIQACAAwIUb2AIUgAAAAQAu3MAWoAAEAAgAcGGALUABCAAQAODCAFuAApDu/4WzFgAFIApAAIAAABduYAtQAAIABAC4cANbgAIQACAAwP3XnAG2AAUgAEAAgAsDbAEKwIXf9ex1/9P9T/f/wu96+7r/6f6n+3/hd7193f90/9P9v7gBuv/p/qf7n+7/xbv4EA/xFJ/iW/yIX2GAP/66/xfOevsAgAAA6f5fOOvtAwACAKT7f2GAtw8ACACQ7v+FAd4+ACAAwIWznj0AIABAAIB0/y+c9fYBAAEA0v2/cNbbBwAEAEj3/8IAbx8AEAAg3f8LA7x9AEAAgAtnPXsAQACAAADp/l84awEAAAIApPt/4awFAAAIAJDu/4UB738D3MAC0P2/MMACAAAEALhw1tsHAAQACACQ7v/9972zFgAAIABAuv8XzloAAIAAAOn+XxhgAQAAAgCk+39hgAUAAAgAcOGYZ6/7n+5/uv8Xjnn7uv/p/qf7f+GYt6/7n+5/uv8XBnj7uv/p/qf738Pb1/1P9z/d/3T/L5z17B+ePQUgCkAAgAAAPbx9CkAUgAAAAQAu3MDbpwAEAAgAcGGAt08BCAAQAODCAG+fApDu/4Wznj0FIApAAIAAABdu4O1TAAIABAC4cANvnwIQACAAwIUB3j4FIABAAIALA7x9CkC6/xfOevYUgCgAAQACAFy4gS1AAQgAEADgwg1sAQpAAIAAABcG2AIUgAAAAQB62gIUgCgA6f5ffIiHeIpP8RLf4kf8CgP8CwAAcJF4E6b4FwAA4MIAW4ACEAAgAMCFAbYABeDCMW8fABAAIABAuv8XftwCAAAEAEj3/8KPWwAAgAAA6f5fGGABAAACAKT7f2GABQAACABw4ay3//T2KQBRAAIABAC4cAMLgAIQACAAwIUbWAAUgAAAAQAuDLAAKAABAAIAXPwNcAMLQPf/wllvnwIQBSAAQACACzewACgAAQACAFy4gQVAAQgAEADgwgALgAIQACAAwIUBFgAFIN3/C2e9fQpAFIAAAAEALtzAFqAABAAIANDTFqAARAEIABAA4MIAW4ACEAAgAMCFAbYABSDd/wtnLQAKQBSAAAABAC7cwBagAAQACABw4Qa2AAUgAEAAgAsDbAEKQACAAAAXBtgCFICe3v7T2wcABAAIAJDu/4UftwAAAAEA0v2/8OMWAAAgAEC6/xcGWAAAgAAA6f5fGGABAAACAPT09p/e/tPbpwBEAQgAEADgwg0sAApAAIAAABduYAFQAAIABAC4MMACoAAEAAgAcGGABUABSPe/T2//09unAEQBCAAQAODiIZ7iU7zEt/gRv8IUCwAAcGGABUABCAAQAODCAAuAApDu/4Wz3j4FIApAAIAAABduYAtQAAIABAC4cANbgAIQACAAwIUBtgAFIABAAIALA2wBCkC6/xd/Z93AAqAABAAIAHDhBrYABSAAQACACzewBSgAAQACAFwYYAtQAAIABAC4MMAWoABcOObtAwACAAQASPf/wo9bAACAAADp/l/4cQsAABAAIN3/Pi0AAEAAgAAA6f5fGGABAAACAFw46+1/evsUgCgAAQACAFy4gQVAAQgAEADgwg0sAApAAIAAAH1aABSAKAABAAIAXBhgAVAA0v2/cNbbpwBEAQgAEADgwg0sAApAAIAAABduYAFQAAIABAC4MMACoAAEAAgAcGGABUABSPf/wllvnwIQBSAAQACACzewBSgAAQACAFy4gS1AAQgAEADg4m+AG9gCAIAAABcG2AIUgHT/L5y1ACgAUQACAAQAuHADW4ACEAAgAMCFG9gCFIAAAAEALgywBSgAAQACAFwYYAtQAC78rmev+5/uf7r/fXn7uv/p/qf7n+7/xYd4iKf4FF/iW/yIvwH3u7r/FwZ4+7r/6f6n+3/hrGcPAAgAEAAg3f++vH0AQACAAADp/l846+0DAAIApPt/YYC3DwAIAJDu/4UB3j4AIADAhbOePQAgAEAAgHT/L5z19gEAAQDS/b9w1tsHAAQASPf/wgBvHwAQACDd/wsDvH0AQACAC2c9ewBAAIAAAOn+X/yddQMLAACQ7v+FsxYAACAAQLr/FwZYAACAAADp/vdlAQAAAgAEALhw1tsHAAQACACQ7v+FsxYAACAAQLr/F85aAACAAADp/l8YYAEAAAIApPt/YYAFAAAIAHDhmGev+5/uf7r/F455+7r/6f6n+3/hmLev+5/uf7r/FwZ4+7r/6f6n+39hgLev+5/uf7r/F8569l+ePQUgCkAAgAAAF27g7VMAAgAEALhwA2+fAhAAIADAhQHePgUgAEAAgAsDvH0KQLr/F8569hSAKAABAAIAXLiBt08BCAAQAODCDbx9CkAAgAAAFwZ4+xSAAAABAC7+BriBfwHo/l8469lTAKIABAAIAHDhBrYABSAAQACAi//EROJdfIiHeIpP8RLf4kf8ClMsgJcF8LIAKABRAAIABAC4+BIG2AIAgAAAvWwBCkAUgAAAAQAuDLAFKAABAAIAXBhgC1AAenn7L28fABAAIABAuv8XftwCAAAEAEj3/8KPWwAAgAAA6f5fGGABAAACAKT7f2GABQAACADQy9t/efsvb58CEAUgAEAAgAs3sAAoAAEAAgBcuIEFQAEIABAA4MIAC4ACEAAgAMCFARYABSDd/wtnvX0KQBSAAAABAC7cwAKgAAQACABw4QYWAAUgAEAAgAsDLAAKQACAAAAXBlgAFIB0/3t5+y9vnwIQBSAAQACACzewBSgAAQACAFy4gS1AAQgAEADgwgBbgAIQACAAwIUBtgAFIN3/C2ctAApAFIAAAAEALtzAFqAABAAIAHDhBrYABSAAQACACwNsAQpAAIAAABcG2AIUgIu/Y37c2wcABABI9//Cj1sAAIAAAOn+X/hxCwAAEAAg3f8LAywAAEAAgHT/LwywAAAAAQAunP39O+sG3j4FIABAAIALN7AAKAABAAIAXLiBBUABCAAQAODiPzGReBcf4iGe4lN8ix/xKwzwLwAAQACAizdhgAUAAAgAcPElXsIUCwAA0LcFQAGIAhAAIADAhQEWAAUg3f8LZ719CkAUgAAAAQAu3MAWoAAEAAgAcOEGtgAFIABAAIALA2wBCkAAgAAAFwbYAhSAdP8vnLUAKABRAAIABAC4cANbgAIQACAAwIUb2AIUgAAAAQAu/ga4gS0AAAgAcGGALUABuHDM2wcABAAIAJDu/4UftwAAAAEA0v2/8OMWAAAgAEC6/xcGPP4G+HELQPf/wgALAAAQAODCWW//29unAEQBCAAQAODCDSwACkAAgAAAF25gAVAAAgAEALgwwAKgAAQACABwYYAFQAFI9//CWW+fAhAFIABAAIC+LQAKQBSAAAABAC7cwAKgAAQACABwYYAFQAEIABAA4MIAC4ACkO7/hbPePgUgCkAAgAAAF25gC1AAAgAEALhwA1uAAhAAIADAhQG2AAUgAEAAgAsDbAEKQLr/F85aABSAKAABAAIAXLiBLUABCAAQAODCDWwBCkAAgAAAFwbYAhSAAAABAPqxBSgAUQBS+0/tP7X/1P5T+0/tP7X/1P5T+0/tP7X/1P5T+0/tP7X/1P5T+0/tP7X/1P5T+0/tP7X/1P5T+79w1ovX/U/3P93/C2f3d9YN/Je/7v+Fs5697n+6/+n+Xxjg2ev+p/uf7v+FAZ697n+6/+n+Xzjrxev+p/uf7v+Fs5697n+6/+n+Xzjr2ev+p/uf7v+FAZ697n+6/+n+Xxjg2ev+p/uf7v+Fs1687n+6/+n+Xzjr7ev+p/uf7n8/3r7uf7r/6f6n+39hgLev+5/uf7r/FwZ4+7r/6f6n+3/hrGev+5/uf7r/F856+7r/6f6n+9+Pt6/7n+5/uv/p/l8Y4O3r/qf7n+7/hQHevu5/uv/p/qf2n9p/av+p/af2n9p/av+p/af2n9p/av+p/af2n9p/av+p/af2n9p/av+p/af2n9p/av+p/af2f+GsF//jH/4UgCgAAQACAFy4gf/ypwAEAAgAcOEG/vhTAAIABAC4MMAffwpAAIAAABcG+ONPAUj3/8JZf/cpAFEAAgAEALhwA//lTwEIABAAoB/PngIQBSAAQACACwP88acABAAIAHBhgD/+FIB0/y8mEm/iXTzEU3yKL/ESP+Lv7N2AAhAFIABAAIALA2wBCkAAgAAAFwbYAhSAdP8vnLUAKABRAAIABAC4cANbgAIQACAAwIUb2AIUgAAAAQAuDLAFKAABAAIAXBhgC1AA+vX2f719AEAAgAAA6f5f+HELAAAQACDd/ws/bgEAAAIApPt/YYAFAAAIAJDu/4UBFgAAIADAhbPe/q+3TwGIAhAAIADAhRtYABSAAAABAC7cwAKgAAQACABwYYAFQAEIABAA4MIAC4ACcPH7f0SxnUw="""

T=[int('0x'+z, base=16) for z in zlib.decompress(base64.b64decode(code)).split(',')]
raw_input()
t=[]
for n in [int(x) for x in sys.stdin.read().split()]:
    t.append(str(n/5+n/25+n/125+n/625+n/3125+n/15625+T[n/78125]))        
print '\n'.join(t)

```

why base64,zlib modules…?
what is the logic the user is trying to implement, the code is implemented by Candide

here is my guess.

the user needs to store certain integer values in the T array (i’ll try to explain them later).

regarding the constraints of the problem statement, N can be as large as 10^9.

the T array would be too long, and wouldn’t fit in the 50k-bytes source code constraint.

to achieve that, the user chooses :

  • to write these integers in hexadecimal form
  • to concatenate them with a comma separator
  • to zip that string in order to compress it to fit in the source size constraint
  • to use base64 encoding, because compressed stream can contain binary data (which needs \x for each)

then, considering the T array :

the Z(N) value is easily expressed with summing ratios between N and powers of 5,

because we all know trailing zeroes are from 2*5 powers (and powers of 2 are far more numerous than powers of 5).

it’s easy to see that 5=5^1, 25=5^2, 125=5^3, … i let you guess what is T then !

obviously :

def Z(N):
    s = 0
    for k in range(1, 13):
        N /= 5
        s += N
    return s

def main():
    T = int(raw_input())
    for t in range(T):
        N = int(raw_input())
        print Z(N)

main()

is far easier to understand ! :slight_smile:

hope it helps.

//