I have been searching for study material for various topics for competitive coding and i found some sort of syllabus for top competitions i thought is worth sharing
List of Topics for programming Competitions
1.Basic Geometry/Euclidean Geometry/Coordinate Geometry/ [3D
variants of everything].
- Computational Geometry.
a. Graham Scan algorithm for Convex Hull O(n * log(n)).
b. Online construction of 3D
convex hull in O(n^2).
c. Bentley Ottmann algorithm to list all intersection points of n line segments in O((n + I) * logn).
■ Suggested Reading 1.
d. Rotating Calipers Technique.
■ Suggested Reading http://
cgm.cs.mcgill.ca/~orm/rotcal.html
■ Problems Refer
the article for a list of problems which can be solved using Rotating Calipers technique.
e. Line Sweep/Plane Sweep algorithms
■Area/Perimeter of Union of Rectangles.
■ Closest pair of points.
■ Suggested Reading 1.
■ Problems Follow
the tutorial for list of problems.
f. Area of Union of Circles.
g. Delayunay Triangulation of n points in O(n * logn).
h. Voronoi Diagrams of n points in O(n * logn) using Fortunes algorithm.
i. Point in a polygon problem
■O(n) solution without preprocessing.
■ O(logn) algorithm with O(n * logn) preprocessing for convex polygons.
j. Problems on computational geometry ■
BSHEEP , BULK , SEGVIS , CONDUIT , RUNAWAY , DIRVS , RAIN1 , SHAMAN , TCUTTER , LITEPIPE , RHOMBS , FSHEEP , FLBRKLIN , CERC07P , BAC ,
ALTARS , CERC07C , NECKLACE , CH3D , RECTANGL , POLYSSQ , FOREST2 , KPPOLY , RAIN2 , SEGMENTS , ARCHPLG , BALLOON , CIRCLES , COMPASS ,
EOWAMRT , ICERINK on SPOJ.
■ CultureGrowth , PolygonCover on Topcoder.
k. Suggested Reading ■
Computational Geometry: Algorithms and applications. Mark De Burg.
- String Algorithm .
a. KnuthMorrisPratt algorithm.
■ Problems NHAY,
PERIOD on SPOJ.
■ Suggested Reading 1.
Cormen chapter on Strings.
b. Aho Corasick algorithm.
■ Problems WPUZZLES
on SPOJ.
c. Suffix Arrays
■ O(n^2 * logn) Naive method of suffix array construction
■ O(n * logn^2) method of suffix array construction
■ O(n * logn) method of suffix array construction.
■ O(n) method of suffix array construction
■ O(n) LCA preprocess on Suffix Arrays to solve a variety of string problems.
d. Suffix Trees
■ O(n) construction of Suffix trees using Ukkenon’s algorithm.
■ O(n) construction of Suffix Trees if provided with Suffix Arrays using Farach’s algorithm.
e. Suffix Automata
■ O(n) Suffix Automaton construction.
f. Dictionary Of Basic Factors
■ O(n * logn) method of DBF construction using Radix Sort.
g. Manachar’s algorithm to find Lengh of palindromic substring of a string centered at a position for each position in the string.
Runtime >
O(n).
h. Searching and preprocessing Regular Expressions consisting of ‘?’, ‘*’.
i. Multidimensional
pattern matching.
j. Problems on Strings [can be solved with a variety of techniques]
■
DISUBSTR , PLD , MSTRING , REPEATS , JEWELS , ARCHIVER , PROPKEY , LITELANG , EMOTICON , WORDS , AMCODES , UCODES , PT07H , MINSEQ ,
TOPALIN , BWHEELER , BEADS , SARRAY , LCS , LCS2 , SUBST1 , PHRASES , PRETILE on SPOJ
■ http://www.algorithmist.com/index.php/Category:String_algorithms
- Basic Graphs [beginner] .
a. Representation of graphs as adjacency list, adjacency matrix, incidence matrix and edge list and uses of different representations
in different scenarios.
b. Breadth First Search.
■ problems 1.
PPATH , ONEZERO , WATER on SPOJ
c. Depth First Search.
d. Strongly Connected Components.
■ problems 1.
TOUR and BOTTOM on SPOJ.
e. Biconnected Components, Finding articulation points and bridges].
■ problems 1.
RELINETS , PT07A on SPOJ.
f. Dijkstra algorithm ■
problems 1.
SHPATH on SPOJ.
g. Floyd Warshall algorithm ■
problems 1.
COURIER on SPOJ.
h. Minimum Spanning Tree
■ problems 1.
BLINNET on SPOJ.
i. Floodfill
algorithm
j. Topological sort
k. BellmanFord
algorithm.
l. Euler Tour/Path.
■ problems WORDS1
on SPOJ.
m. Suggested reading for most of the topics in Graph algorithms ■
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=graphsDataStrucs1 .
■ Also refer to the tutorial for problems concerning these techniques.
■ Cormen chapter 22 to 24.
- Flow networks/ matching etc etc. [Interdiate/Advanced].
a. Maximum flow using Ford Fulkerson Method.
■ Suggested Reading 1.
■ problems TAXI
, POTHOLE , IM , QUEST4 , MUDDY , EN , CABLETV , STEAD , NETADMIN , COCONUTS , OPTM on SPOJ.
b. Maximum flow using Dinics Algorithm.
■ Problems PROFIT
on spoj.
c. Minimum Cost Maximum Flow.
■ Successive Shortest path algorithm.
■ Cycle Cancelling algorithm.
■ Suggested Reading 1.
d. Maximum weighted Bipartite Matching (Kuhn Munkras algorithm/Hungarian Method)
■ problems GREED
, SCITIES , TOURS on SPOJ | http://www.topcoder.com/stat?c=problem_statement&pm=8143
e. Stoer Wagner mincut
algorithm.
f. Hopcroft Karp bipartite matching algorithm.
■ problems ANGELS
on SPOJ.
g. Maximum matching in general graph (blossom shrinking)
h. GomoryHu
Trees.
■ i) Problems MCQUERY
on Spoj.
i. Chinese Postman Problem.
■ problems http://
acm.uva.es/archive/nuevoportal/data/problem.php?p=4039
■ Suggested Reading http://
eie507.eie.polyu.edu.hk/sssubmission/
B7a/
j. Suggested Reading for the full category >
■ Network flow Algorithms
and Applications by Ahuja
■ Cormen book chapter 25.
- Dynamic Programming.
a. Suggested Reading Dynamic
Programming(DP) as a tabulation method
■ Cormen chapter on DP
b. Standard problems (you should really feel comfortable with these types)
■ http://www.topcoder.com/stat?c=problem_statement&pm=8570&rd=12012&rm=269199&cr=7581406
■ http://www.topcoder.com/stat?c=problem_statement&pm=10765&rd=14183
c. State space reduction
■ http://www.topcoder.com/stat?c=problem_statement&pm=10902
■ http://www.topcoder.com/stat?c=problem_statement&pm=3001
■
d. Solving in the reverse easier
characterizations looking from the end
■ http://www.spoj.pl/problems/MUSKET/
■ http://www.topcoder.com/stat?c=problem_statement&pm=5908
e. Counting/optimizing arrangements satisfying some specified properties
■ http://www.topcoder.com/stat?c=problem_statement&pm=8306
■ http://www.topcoder.com/stat?c=problem_statement&pm=7849
f. Strategies and expected values
■ http://www.topcoder.com/stat?c=problem_statement&pm=10765&rd=14183
■ http://www.topcoder.com/stat?c=problem_statement&pm=10806
■ http://www.topcoder.com/stat?c=problem_statement&pm=7828
■ http://www.topcoder.com/stat?c=problem_statement&pm=7316
g. DP on probability spaces
■ http://www.topcoder.com/stat?c=problem_statement&pm=7422
■ http://www.topcoder.com/stat?c=problem_statement&pm=2959
■ http://www.topcoder.com/stat?c=problem_statement&pm=10335
h. DP on trees
■ http://www.topcoder.com/stat?c=problem_statement&pm=10800
■ http://www.topcoder.com/stat?c=problem_statement&pm=10737
■ http://www.topcoder.com/stat?c=problem_solution&rm=266678&rd=10958&pm=8266&cr=758140
6
i. DP with datastructures
■ http://www.spoj.pl/problems/INCSEQ/
■ http://www.spoj.pl/problems/INCDSEQ/
■ http://www.spoj.pl/problems/LIS2/
■ http://www.topcoder.com/stat?c=problem_statement&pm=1986
j. Symmetric characterization of DP state
■ http://www.topcoder.com/stat?c=problem_statement&pm=8610
k. A good collection of problems
■ http://codeforces.com/blog/entry/325
■ http://problemclassifier.appspot.com/index.jsp?search=dp&usr=
- Greedy.
a. Suggested Reading ■
Chapter on Greedy algorithms in Cormen.
■ http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=greedyAlg
b. problems refer to the topcoder tutorial.
- Number Theory.
a. Modulus arithmetic basic
postulates [Including modular linear equations , Continued fraction and Pell’s equation]
■ Suggested Reading 1.
Chapter 1 from Number Theory for Computing by SY Yan [ Recommended ]
2. 31.1, 31.3 and 31.4 from Cormen
■ Problems
b. Fermat’s theorem, Euler Totient theorem ( totient function, order , primitive roots )
■ Suggested Reading
-
1.6, 2.2 from Number Theory by SY Yan
-
31.6 , 31.7 from Cormen
■ Problems
c. Chinese remainder theorem
■ Suggested Reading
-
31.5 from Cormen
-
1.6 from Number Theory by SY Yan
■ Problems
-
Project Euler 271
-
http://www.topcoder.com/stat?c=problem_statement&pm=10551&rd=13903
d. Primality tests ■
Deterministic O(sqrt(n) ) approach
■ Probabilistic primality tests Fermat
primality test, MillerRabin
Primality test
- Suggested Reading a.
b. Cormen 31.8
c. 2.2 from Number Theory by SY Yan
- Problems a.
PON, PRIC, SOLSTRAS on SPOJ
b. http://www.topcoder.com/stat?c=problem_statement&pm=4515
e. Prime generation techniques Sieve
of Erastothenes
■ Suggested Problems PRIME1
on SPOJ
f. GCD using euclidean method
■ Suggested Reading
- 31.2 Cormen
■ Problems 1.
GCD on SPOJ
g. Logarithmic Exponentiation
■ Suggested Reading 1.
h. Integer Factorization
■ Naive O(sqrt(n)) method
■ Pollard Rho factorization
■ Suggested Reading
-
2.3 from Number Theory SY Yan
-
31.9 Cormen
■ Problems 1.
i. Stirling numbers
j. Wilson theorem
■ nCr % p in O§ preprocess and O(log n ) query
k. Lucas Theorem
l. Suggested Reading for Number Theory ■
Number theory for computing by Song Y Yan [ Simple book describing concepts in details ]
■ Concepts are also superficially covered in Chapter 31 of Introduction to Algorithms by Cormen
■ http://www.codechef.com/wiki/tutorialnumbertheory
■ http://www.algorithmist.com/index.php/Category:Number_Theory
m. Problems on Number Theory ■
■ http://problemclassifier.appspot.com/index.jsp?search=number&usr=
- Math (Probability, Counting, Game Theory, Group Theory, Generating functions, Permutation Cycles, Linear Algebra)
a. Probability.
Syllabus
■ Basic probability and Conditional probability
- Suggested problems
a. http://www.spoj.pl/problems/CT16E/
b. http://www.spoj.pl/problems/CHICAGO/
■ Random variables, probability generating functions
■ Mathematical expectation + Linearity of expectation
- Suggested problems
a. http://www.spoj.pl/problems/FAVDICE/
b. http://www.topcoder.com/stat?c=problem_statement&pm=10744
■ Special discrete and continuous probability distributions
-
Bernoulli, Binomial, Poisson, normal distribution
-
Suggested Problem
a. http://acm.sgu.ru/problem.php?contest=0&problem=498
■ Suggested Readings
-
Cormen appendix C (very basic)
-
Topcoder probabilty tutorial http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=probabilities
-
William Feller, An introduction to probability theory and its applications
b. Counting
Syllabus
■ Basic principles Pigeon
hole principle, addition, multiplication rules
- Suggested problems
a. http://acm.timus.ru/problem.aspx?space=1&num=1690
b. http://www.topcoder.com/stat?c=problem_statement&pm=10805
- Suggested readings
a. http://en.wikipedia.org/wiki/Combinatorial_principles
b. http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=combinatorics
c. http://www.maa.org/editorial/knot/pigeonhole.html
\■ Inclusionexclusion
. Suggested readings
a. http://en.wikipedia.org/wiki/Inclusion–exclusion_principle
- Suggested problems
a. http://www.topcoder.com/stat?c=problem_statement&pm=4463&rd=6536
b. http://www.topcoder.com/stat?c=problem_statement&pm=10238
■ Special numbers
- Suggested reading Stirling,
eurlerian, harmonic, bernoulli, fibonnacci numbers
a. http://en.wikipedia.org/wiki/Stirling_number
b. http://en.wikipedia.org/wiki/Eulerian_numbers
c. http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
d. http://en.wikipedia.org/wiki/Bernoulli_number
e. http://en.wikipedia.org/wiki/Fibonnaci_numbers
f. Concrete mathematics by Knuth
- Suggested problems
a. http://www.topcoder.com/stat?c=problem_statement&pm=1643
b. http://www.topcoder.com/stat?c=problem_statement&pm=8202&rd=11125
c. http://www.topcoder.com/stat?c=problem_statement&pm=8725
d. http://www.topcoder.com/stat?c=problem_statement&pm=2292&rd=10709
■ Advanced counting techniques Polya
counting, burnsides lemma
- Suggested reading
a. http://en.wikipedia.org/wiki/Burnside’s_lemma
blogspot.com/2008/11/burnsideslemma.
html
- Suggested Problems
a. http://www.topcoder.com/stat?c=problem_statement&pm=9975
b. http://www.spoj.pl/problems/TRANSP/
c. Game theory
Syllabus
■ Basic principles and Nim game
-
Sprague grundy theorem, grundy numbers
-
Suggested readings
a. http://en.wikipedia.org/wiki/Sprague–Grundy_theorem
b. http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=algorithmGames
c. http://www.ams.org/samplings/featurecolumn/
fcarcgames1
d. http://www.codechef.com/wiki/tutorialgametheory
- Suggested problems
a. http://www.topcoder.com/stat?c=problem_statement&pm=3491&rd=6517
b. http://www.topcoder.com/stat?c=problem_statement&pm=3491&rd=6517
■ Hackenbush
- Suggested readings
a. http://en.wikipedia.org/wiki/Hackenbush
b. http://www.ams.org/samplings/featurecolumn/
fcarcpartizan1
- Suggested problems
a. http://www.cs.caltech.edu/ipsc/problems/g.html
b. http://www.spoj.pl/problems/PT07A/
d. Linear Algebra
Syllabus
■ Matrix Operations
- Addition and subtraction of matrices
a. Suggested Reading
i. Cormen 28.1
- Multiplication ( Strassen’s algorithm ), logarithmic exponentiation
a. Suggested reading
i. Cormen 28.2
ii.Linear Algebra by Kenneth Hoffman Section 1.6
b. Problems
i. http://uva.onlinejudge.org/external/111/11149.html
- Matrix transformations [ Transpose, Rotation of Matrix, Representing Linear transformations using matrix ]
a. Suggested Reading
i. Linear Algebra By Kenneth Hoffman Section 3.1,3.2,3.4,3.7
b. Problems
i. http://www.topcoder.com/stat?c=problem_statement&pm=6877
ii.JPIX on Spoj
- Determinant , Rank and Inverse of Matrix [ Gaussean Elimination , Gauss Jordan Elimination]
a. Suggested Reading
i. 28.4 Cormen
ii.Linear Algebra by Kenneth Chapter 1
b. Problems
i. http://www.topcoder.com/stat?c=problem_statement&pm=8174
ii.http://www.topcoder.com/stat?c=problem_statement&pm=6407&rd=9986
iii. http://www.topcoder.com/stat?c=problem_statement&pm=8587
iv.HIGH on Spoj
- Solving system of linear equations
a. Suggested Reading
i. 28.3 Cormen
ii.Linear Algebra by Kenneth Chapter 1
b. Problems i.
http://www.topcoder.com/stat?c=problem_statement&pm=3942&rd=6520
- Using matrix exponentiation to solve recurrences
a. Suggested Reading
i. http://www.topcoder.com/tc?module=Static&d1=features&d2=010408
b. Problems
i. REC, RABBIT1 , PLHOP on spoj
ii.http://www.topcoder.com/stat?c=problem_statement&pm=6386 ,
http://www.topcoder.com/stat?c=problem_statement&pm=7262,
http://www.topcoder.com/stat?c=problem_statement&pm=6877
- Eigen values and Eigen vectors
a. Problems
i. http://www.topcoder.com/stat?c=problem_statement&pm=2423&rd=4780
■ Polynomials
- Roots of a polynomial [ Prime factorization of a polynomial, Integer roots of a polynomial, All real roots of a
polynomial ]
a. Problems
i. http://www.topcoder.com/stat?c=problem_statement&pm=8273&rd=10798
ii.POLYEQ , ROOTCIPH on Spoj
- Lagrange Interpolation
a. Problems
i. http://www.topcoder.com/stat?c=problem_statement&pm=10239
ii.http://www.topcoder.com/stat?c=problem_statement&pm=8725
e. Permutation cycles
■ Suggested Reading
- Art of Computer Programming by Knuth Vol. 3
■ Problems
- ShuffleMethod, Permutation and WordGame on topcoder.
f. Group Theory
■ Bernside Lemma, Polias theorem
- Suggested Reading
a. Hernstein’s topics in algebra
blogspot.com/2008/11/burnsideslemma.
html
- Problems
a. TRANSP on spoj
b. http://www.topcoder.com/stat?c=problem_statement&pm=9975
b. Generating functions
■ Suggested Reading
-
Herbert Wilf’s generating functionology
-
Robert Sedgewick and Flajoulet’s Combinatorial analysis
10.Data Structures.
i. Basic
a. Arrays/Stacks/Queues :
■ Problems
■ Reading:
-
CLRS: section 10.1
-
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=dataStructures
b. Singly/Doubly Linked List :
■ Problems
- h ttps://www.spoj.pl/problems/POSTERS/
■ Reading: CLRS: section 10.2, Mark Allen Weies Chapter 3
c. Hash Tables :
■ Problems
■ Reading: CLRS: Chapter 11, Mark Allen Weies Chapter 5
d. Circular linked list / queue
■ Problems
e. Binary/nary Trees
■ Reading
-
CLRS: section 10.4
-
CLRS: Chapter 12
-
Mark Allen Weies Chapter 4
-
h ttp://www.topcoder.com/tc?module=Static&d1=tutorials&d2=binarySearchRedBlack
f. Heaps
■ Problems
-
h ttps://www.spoj.pl/problems/EXPEDI/
■ Reading : Mark Allen Weies Chapter 6
ii. Advanced
a. Trie (Keyword tree)
■ Problems
■ Reading
b. Interval trees / Segment Trees
■ Problems
■ Reading
c. Fenwick(Binary Indexed) trees
■ Problems
■ Reading: http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=binaryIndexedTrees
d. Disjoint data structures
■ Problems
■ Reading:
-
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=disjointDataStructure
-
Mark Allen Weies Chapter 8
e. Range minimum Query(RMQ)
■ Problems
■ Reading http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
f. Customized interval/segment trees (Augmented DS)
■ Problems
■ Reading: CLRS: Chapter 14 (augmented DS)
g. AVL Trees
■ Problems
■ Reading
iii. Miscellaneous (Not to be covered)
a. Splay Trees
b. B/B+ Trees
c. kd
Trees
d. Redblack
Trees
e. Skip List
f. Binomial/ Fibonacci heaps
iv. Exercices
-
https://www.spoj.pl/problems/LAZYPROG / (Hint: Heaps)t
-
https://www.spoj.pl/problems/HELPR2D2/ (Hint: Interval Trees)
-
https://www.spoj.pl/problems/SAM/ (Hint: Heaps)
-
https://www.spoj.pl/problems/PRHYME/ (Hint: Trie)
-
https://www.spoj.pl/problems/HEAPULM/ (Hint: Interval Trees)
-
https://www.spoj.pl/problems/CORNET/ (Hint: Disjoint )
11.Search Techniques/Bruteforce writing techniques/Randomized algorithms.
a. Backtracking [
Beginner].
■ problems >
-
N queens problems
-
Knights Tour
-
Sudoku Problem
-
Tiling Problem.
-
15 puzzle.
b. Dancing Links and Algorithm X given by Knuth [
Advanced]
■ problems PRLGAME,
SUDOKU, NQUEEN on SPOJ
■ Suggested reading 1.
stanford.edu/~uno/papers/dancingcolor.
ps.gz
c. Binary Search [
Beginner].
■ poblems AGGRCOW
on SPOJ. Refer the tutorial for more problems.
■ finding all real roots of a polynomial using binary search. [intermediate].
■ Suggested Reading 1.
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=binarySearch
d. Ternary Search [
Intermediate].
■ problems 1.
http://www.spoj.pl/problems/KPPOLY/
-
http://www.topcoder.com/stat?c=problem_statement&pm=4705&rd=7993
-
http://www.topcoder.com/stat?c=problem_statement&pm=7741&rd=10671
-
http://www.topcoder.com/stat?c=problem_statement&pm=6464&rd=9994
-
http://www.topcoder.com/stat?c=problem_statement&pm=3501&rd=6529
-
http://www.topcoder.com/stat?c=problem_statement&pm=4567&rd=6539
e. Meet in the middle [Intermediate].
■ problems 1.
http://www.spoj.pl/problems/MAXISET/
f. Hill Climbing [Advanced].
g. Regular Iteration to reach a fixed point [Advanced].
■ NewtonRaphson
method to find root of a mathematical function.
■ Iterations to solve linear nonhomogeneous
system of equations.
h. Randomized Algorithms [Intermediate]■
QuickSort.
12.General programming issues in contests >
a. Arithmetic Precision [
Beginner].
■ Suggested Reading 1.
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=integersReals
b. Representing sets with bitmasks and manipulating bitmasks [
Beginner].
■ Suggested Reading 1.
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
■ problems refer
to the tutorial link in Suggested reading section.